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For a given positive integer n, by Ẽn we denote the set of linear homogeneous nth-order differ-
ential equations

y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)ẏ + an(t)y = 0, t ∈ R+

def
= [0,+∞), (1)

with continuous coefficients ai( · ) : R+ → R, i = 1, n. We identify the equation (1) and the row
a = a( · ) = (a1( · ), . . . , an( · )) of its coefficients and hence denote the equation (1) by a as well. By
S(a) we denote the solution set of the equation a, and by S∗(a) we denote the set of its nonzero
solutions, i.e. S∗(a) = S(a) \ {0}.

Let y( · ) be a real-valued function defined on some set D ⊂ R. A point t ∈ D is called a
sign change point of a function y( · ) if, in any neighborhood of that point, the function y( · ) takes
values of opposite signs. If y( · ) is a continuous function, then a sign change point is its zero. If
the function y( · ) is defined in some neighborhood of its zero t0, then the zero t0 is referred to as a
root of multiplicity k of the function y( · ) if at the point t0 its first k − 1 derivatives are zero and
the kth derivative is nonzero.

Next, by κ we denote a symbol that takes values in the set of three elements {0,−,+}. For
a function y( · ) : R+ → R and a number t > 0, by νκ(y( · ); t) we denote the following quantities
for the function y( · ) on the half-open interval [0, t) depending on the value of κ : the number of
zeros if κ = 0, the number of sign changes if κ = −, and the sum of root multiplicities if κ = +.
If t0 = 0 is a zero of the function y( · ), then, for the computation of its multiplicity, all desired
derivatives are considered to be right-sided. If the number of zeros or the number of sign changes or
roots of the function y( · ) on the half-open interval [0, t) is infinite, then the corresponding values
are considered to be equal to +∞. It is easy to see that νκ(y( · ); t) is a finite integer number for
every symbol κ ∈ {0,−,+}, nonzero solution y( · ) of the equation (1), and t > 0. Sergeev [7]– [9]
introduced the following notion.

Definition. For any nonzero solution y( · ) ∈ S∗(a) of the system a the quantities

ν̂ κ[y]
def
= lim

t→+∞

π

t
ν κ(y( · ); t) and ν̌ κ[y]

def
= lim

t→+∞

π

t
ν κ(y( · ); t) (2)

are called the upper and lower characteristic frequencies, respectively, of zeros if κ = 0, signs if
κ = −, and roots if κ = +.

Generally, the value of the quantities ν̌ κ[y] and/or ν̂ κ[y] can be equal to +∞. By R we denote
the extended numerical axis (R = R ⊔ {−∞,+∞}) considered in the natural (ordinal) topology,
and by R+ we denote its nonnegative semiaxis.

For any a ∈ Ẽn, the asymptotic characteristics (2) define the mappings

ν̂ κ[ · ] : S∗(a) → R+ and ν̌ κ[ · ] : S∗(a) → R+, κ ∈ {0,−,+}, (3)
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acting by the rules y 7−→ ν̂ κ[y] and y 7−→ ν̌ κ[y], respectively. Instead of the mappings (3),
it is more convenient to consider the functions ν̂ κ( · ) and ν̌ κ( · ), κ ∈ {0,−,+}, respectively,
which are defined as follows. Since, between the vector space S(a) of solutions of an equation
a ∈ Ẽn and the vector space Rn, there is a natural isomorphism ι : S(a) → Rn acting by the rule
y( · ) 7−→ (y(0), ẏ(0), . . . , y(n−1)(0))⊤, it follows that the mappings (3) define the functions

ν̂ κ( · ) def
= ν̂ κ[ · ] ◦ ι−1 : Rn

∗ → R+ and ν̌ κ( · ) def
= ν̌ κ[ · ] ◦ ι−1 : Rn

∗ → R+, κ ∈ {0,−,+}, (4)

where Rn
∗

def
= Rn \ {0}. Conversely, since ι is a bijection, one can see that the functions (4) define

the mappings (3). The functions (4) have the following advantage in comparison with the mappings
(3): the domains of those functions coincide for all equations from the set Ẽn.

Since the functions (4) (and the mappings (3)) are constant on any one-dimensional linear
subspace with the excluded zero, it follows that, instead of the functions ν̂ κ( · ) and ν̌ κ( · ), κ ∈
{0,−,+}, one can consider their restrictions to the unit (n − 1)-dimensional sphere Sn−1 in Rn

with center the origin. The function ν̂ κ( · ) (respectively, the function ν̌ κ( · )) with κ = 0,−,+ is
referred [3], [4] to as the Sergeev upper (respectively, lower) frequency of zeros, signs, and roots
of the equation (1), respectively. The image ν̂ κ(S∗(a)) (respectively, the image ν̌ κ(S∗(a))) of the
function ν̂ κ( · ) (respectively, the function ν̌ κ( · )) is referred to as the upper (respectively, lower)
frequency spectra of zeros if κ = 0, signs if κ = −, and roots if κ = +.

The descriptions of the Baire classes and the spectra of the Sergeev upper frequency of zeros,
signs, and roots of the equation (1) were provided in [2]. In this paper we present results on the
Baire classes and structure of the spectra of the Sergeev lower frequency of zeros, signs, and roots
of the equation (1).

To formulate our results let us briefly give some necessary notations and definitions. Let f( · )
be a real- or R-valued function defined on some set M. For each number r ∈ R and for a function
f( · ), the Lebesgue sets [f > r] and [f > r] are defined as the sets [f > r] = {t ∈ M : f(t) > r}
and [f > r] = {t ∈ M : f(t) > r}. The sets [f < r] and [f 6 r] have a similar meaning (the
complements of the corresponding Lebesgue sets in M), and [f = r] is a level set of the function
f( · ). As usual, here we assume that −∞ < r < +∞ for any r ∈ R.

If M is a topological space, then its five first Borel classes of sets are known to be defined as
follows [5, p. 192], [1, p. 108]. The zero class consists of closed and open sets (their classes are
denoted by F and G, respectively). The first class consists of sets of the type Gδ and the type Fσ

(Gδ-sets and Fσ-sets) those are sets, which can be represented as countable intersections of open
sets and countable unions of closed sets, respectively. The second class consists of sets of the type
Fσδ and the type Gδσ (Fσδ-sets and Gδσ-sets) those are sets, which can be represented as countable
intersections of Fσ-sets and countable unions of Gδ-sets, respectively. Analogically, one can define
sets of the type Gδσδ and the type Fσδσ, which form the third Borel class, and sets of the type
Fσδσδ and the type Gδσδσ of the fourth Borel class.

Let M and N be some systems of subsets in M. We say [5, pp. 223, 224] that a function
f( · ) : M → R or f( · ) : M → R belongs to the class (M, ∗ ), or f( · ) is a function of the class
(M, ∗ ) if its Lebesgue set satisfies the condition [f > r] ∈ M for any r ∈ R. If [f > r] ∈ N for any
r ∈ R, then we say that the function f( · ) belongs to the class ( ∗ , N), or f( · ) is a function of the
class ( ∗ , N). If a function f( · ) belongs to each of the classes (M, ∗ ) and ( ∗ , N), then we say that
it belongs to the class (M,N), or it is a function of the class (M,N). We say ( [5, pp. 248, 249];
for R-valued functions see [6, p. 383]) that the function f( · ) : M → R or f( · ) : M → R belongs
to the first Baire class B1 if f( · ) ∈ (Fσ, Gδ), to the second Baire class B2 if f( · ) ∈ (Gδσ, Fσδ), and
to the third Baire class B3 if f( · ) ∈ (Fσδσ, Gδσδ).

A set A ∈ R is called a Suslin set [5, p. 213], [6, p. 489] of the number line R if it is a continuous
image of irrational numbers I with the subspace topology. The class of Suslin sets contains the
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class of Borel sets as a proper subclass, and at the same time it is a proper subclass of the class of
Lebesgue measurable sets. A set A ∈ R is called a Suslin set of the extended real number line if it
can be represented as an union of a Suslin set of R and some subset (including the empty subset)
of two-element set {−∞,+∞}.

Theorem. For any equation a ∈ Ẽn its lower Sergeev frequency of zeros and signs belong to the
class (Gδσ,

∗ ), and the lower frequency of roots belongs to the class (Fσ,
∗ ).

It is quite interesting to compare this statement with the descriptions of the Baire classes of
the Sergeev upper frequency of zeros, signs, and roots of the equation (1). Let us recall that for
any equation a ∈ Ẽn its upper Sergeev frequency of zeros and roots belong [3] to the class ( ∗ , Fσδ),
and the lower frequency of signs belong to the class ( ∗ , Gδ, ).

Since the image of any Baire function is [5, p. 255] a Suslin set, from the theorem it follows

Corollary. For any equation a ∈ Ẽn the lower frequency spectra ν̌ 0(S∗(a)), ν̌ −(S∗(a)), and
ν̌ +(S∗(a)) of zeros, signs, and roots are Suslin sets of the nonnegative semi-axis R+.
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