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1 Introduction

Consider the equation
y(n) = |y|k sgn y (1.1)

with k > 1. Hereafter, we put γ = k−1
n and m = n− 1.

Definition 1.1. A solution y(x) of equation (1.1) will be said to be n-positive if it is maximally
extended in both directions and eventually satisfies the inequalities

y(x) > 0, y′(x) > 0, . . . , y(m)(x) > 0.

Note that if the above inequalities are satisfied by a solution of (1.1) at some point x0, then
they are also satisfied at any point x > x0 in the domain of the solution. Moreover, such a solution,
if maximally extended, must be a so-called blow-up solution (having a vertical asymptote at the
right endpoint of its domain).

Immediate calculations show that equation (1.1) has n-positive solutions with exact power-law
behavior, namely,

y(x) = C(x∗ − x)−1/γ , where Ck−1 =

m∏
j=0

(
j +

1

γ

)
, (1.2)

defined on (−∞, x∗) with arbitrary x∗ ∈ R. For n = 1 all n-positive solutions of (1.1) are defined
by (1.2). For n ∈ {2, 3, 4} it is known that any n-positive solution of (1.1) and even of more general
equations is asymptotically equivalent, near the right endpoint of its domain, to the solution defined
by (1.2) with appropriate x∗ (see [5] for n = 2, and [1–3] for n ∈ {3, 4}).

The natural hypothesis generalizing this statement for all n > 4 appears to be wrong (see [6]
for sufficiently large n and [4] for n ∈ {12, 13, 14}).

However, a weaker version of this statement for higher-order equations can be proved.

2 Main result

Theorem 2.1. For any integer n > 4 there exists K > 1 such that for any real k ∈ (1,K),
any n-positive solution of equation (1.1) is asymptotically equivalent, near the right endpoint of its
domain, to a solution with exact power-law behavior.

To prove this result, an auxiliary dynamical system is investigated on the m-dimensional sphere.
To define it note that if a function y(x) is a solution of equation (1.1), the same is true for the
function

z(x) = Ay(Aγx+B) (2.1)
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with any constants A > 0 and B. Any non-trivial solution y(x) of equation (1.1) generates in
Rn \ {0} the curve given parametrically by

(y(x), y′(x), y′′(x), . . . , y(m)(x).

We can define an equivalence relation on Rn \ {0} such that all solutions obtained from y(x) by
(2.1) with A > 0 generate equivalent curves, i.e. curves passing through equivalent points (maybe
for different x). We assume the points (y0, y1, y2, . . . , ym) and (z0, z1, z2, . . . , zm) in Rn \ {0} to be
equivalent if and only if there exists a constant λ > 0 such that

zj = λn+j(k−1)yj , j ∈ {0, 1, . . . ,m}.

The quotient space obtained is homeomorphic to the m-dimensional sphere

Sm =
{
y ∈ Rn : y20 + y21 + y22 + · · ·+ y2m = 1

}
having exactly one representative of each equivalence class since the equation

λ2ny20 + λ2(n+2(k−1))y21 + · · ·+ λ2(n+m(k−1))y2m = 1

has exactly one positive root λ for any (y0, y1, y2, . . . , ym) ∈ Rn \{0}. Equivalent curves in Rn \{0}
generate the same curves in the quotient space. The last ones are trajectories of an appropriate
dynamical system, which can be described, in different charts covering the quotient space, by
different formulae using different independent variables. A unique common independent variable
can be obtained from those ones by using a partition of unity.

Within the chart that covers the points corresponding to positive values of solutions and has
the coordinate functions

uj = y(j)y−1−γj , j ∈ {1, . . . ,m}, (2.2)

the dynamical system can be written as

du1
dt

= u2 − (1 + γ)u21,

duj
dt

= uj+1 − (1 + γj)u1uj , j ∈ {2, . . . ,m− 1},

dum
dt

= 1− (1 + γm)u1um

(2.3)

with the independent variable

t =

x∫
x0

y(ξ)γ dξ.

The dynamical system described has some equilibrium points corresponding to the solutions of
equation (1.1) with exact power-law behavior. One of them, which corresponds to the n-positive
solutions with exact power-law behavior, can be found in terms of its uj coordinates denoted by
(a1, . . . , am): 

aj+1 = (1 + γj)a1aj = aj+1
1

j∏
l=1

(1 + γl), j ∈ {1, . . . ,m− 1},

a1 =
( m∏

l=1

(1 + γl)
)−1/n

.

(2.4)
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Instead of system (2.3) it is more convenient for our current purposes to use another one obtained
by the substitution τ = a1t, uj = ajvj , j ∈ {1, . . . ,m}:

dv1
dτ

= (1 + γ)(v2 − v21),

dvj
dτ

= (1 + γj)(vj+1 − v1vj), j ∈ {2, . . . ,m− 1},
dvm
dτ

= (1 + γm)(1− v1vm).

(2.5)

The above equilibrium point has in the new chart all coordinates equal to 1.

Lemma 2.1. There exist γ1 > 0 and r > 0 such that for any real γ ∈ [0, γ1], the Jacobian matrix
of system (2.5) at the point (1, . . . , 1) has m different eigenvalues with real parts less than −r.

Proof. First, consider the mentioned Jacobian m×m matrix for γ = 0:

−2 1 0 . . . 0 0
−1 −1 1 . . . 0 0
−1 0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
−1 0 0 . . . −1 1
−1 0 0 . . . 0 −1

 .

We prove by mathematical induction that its characteristic polynomial is equal to

Pm(λ) =
(1 + λ)m+1 − 1

(−1)mλ
. (2.6)

For m = 1 this is proved immediately:

P1(λ) = −2− λ = −(1 + λ)2 − 1

λ
=

(1 + λ)1+1 − 1

(−1)1λ
.

If (2.6) is proved for some m, then Pm+1(λ) can be calculated by expanding along the last row
as follows:

Pm+1(λ) = (−1) · (−1)m + (−1− λ)Pm(λ)

= (−1)m+1 − (1 + λ) · (1 + λ)m+1 − 1

(−1)mλ
=

(1 + λ)m+2 − 1

(−1)m+1λ
.

Now (2.6) is proved for m+ 1, too.
The roots of the polynomial Pm(λ) are equal to

λj = −1 + cos
2πj

n
+ i sin

2πj

n
, j ∈ {1, . . . ,m},

with j = 0 excluded because of the denominator in (2.6). The real parts of the roots are less then
or equal to −2 sin2 π

n . Since all roots of the polynomial are different and therefore simple, they
depend continuously on the coefficients of the polynomial. Hence for sufficiently small γ > 0 the
Jacobian matrix of system (2.5) at the point (1, . . . , 1) has all eigenvalues with real part less than
− sin2 π

n .

Lemma 2.2. If γ = 0, then any trajectory of system (2.5) passing through a point with positive vj
coordinates tends to the equilibrium point (1, . . . , 1).
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Proof. Trajectories of (2.5) passing through a point with positive vj coordinates correspond to
n-positive solutions of equation (1.1). Trajectories of (2.5) with γ = 0 correspond to solutions of
the linear equation y(n) = y, which are all known exactly. They are

y(x) = C0 e
x +

⌊m/2⌋∑
j=1

Cje
rjx sin(ωjx+ φj) + C̃e−x

with rj = cos 2πj
n < 1, ωj = sin 2πj

n , and arbitrary constants Cj , φj , C̃, though the last one must
equal 0 whenever n is odd. Such a solution is n-positive if and only if the constant C0 is greater
than 0. But in this case, all vj coordinates of the related trajectory, which are equal to y(j)/y
whenever γ = 0, tend to 1.

Up to the moment, we actually considered, for each γ > 0, its own dynamical system defined on
its own quotient space homeomorphic to the m-dimensional sphere. In what follows, we need one
sphere with a γ-parameterized dynamical system having an equilibrium point common for all γ in
consideration. Thus, the points (y0, y1, . . . , ym) ∈ R \ {0} obtained while treating solutions of (1.1)
with different γ will generate the same point on the sphere Sm if their corresponding coordinates
have the same sign and the tuples(

|y| :
∣∣∣ y′
a1

∣∣∣ 1
1+γ

: . . . :
∣∣∣y(j)
aj

∣∣∣ 1
1+γj

: . . . :
∣∣∣y(m)

am

∣∣∣ 1
1+γm

)
,

if considered as sets of projective coordinates, define the same point in the projective space RPm.
In particular, for points corresponding to n-positive solutions this means that they have the same
vj coordinates in the related charts. Hereafter, the domain consisting of all points with positive
vj coordinates is denoted by Sm

+ . The only equilibrium point in Sm
+ , which has all vj coordinates

equal to 1, is denoted by v∗.

Lemma 2.3. There exist γ2 > 0 and an open neighborhood U of the point v∗ such that for any
positive γ < γ2, any trajectory of the global dynamical system passing through the closure U tends
to v∗. If such a trajectory does not coincide with v∗, then it passes transversally, at some time,
through the boundary ∂U .

Proof. Now, once more, we choose other local coordinates to describe the dynamical system on
Sm
+ . First, we use a translation continuous in γ to put the equilibrium point to 0. Then a linear

complex transformation also continuous in γ is used to make the linear part of the right-hand side
to be a diagonal matrix. If the new complex coordinates are wj , then our dynamical system can
be written as

dwj

dτ
= λj(γ)wj + qj(w, γ), j ∈ {1, . . . ,m}, (2.7)

with some functions qj(w, γ) quadratic in w and continuous in γ. There exists a constant Q > 0
such that |qj(w, γ)|2 ≤ Q|w|2 for all j ∈ {1, . . . ,m}, all w ∈ Cm, and all positive γ ≤ γ1, where

|w|2 =
m∑
j=1

|wj |2 and the constant γ1 is taken from Lemma 2.1.

Now consider the quadratic function |w|2 and note that

d|w|2

dτ
= 2

m∑
j=1

Re
(
λj(γ)|wj |2 + qj(w, γ)wj

)
< 2|w|2

(
− r +Q|w|

)
with the constant r > 0 from Lemma 2.1.
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Hence d log |w|2
dτ < −r if |w| < − r

2Q . Now, the equilibrium point v∗ has the neighborhood U

defined by the last inequality. For any trajectory passing through U we have log |w|2 → −∞ as
t → ∞, which means that all such trajectories tend to v∗. Since the function log |w|2 is defined

for all points of U \ {v∗}, the above estimate of d log |w|2
dτ proves the last statement of the current

lemma.

To complete the proof of the Theorem 2.1, consider the set difference of the closure Sm
+ and

the neighborhood U from Lemma 2.3. This compact set will be denoted by B. Further, consider
the function f defined on B and equal, for each point b ∈ B, to the time needed for the trajectory
of the dynamical system with γ = 0 to reach ∂U starting from b. This time is well-defined due to
Lemma 2.2.

By the implicit function theorem, f is a C1 function. Its derivative along the trajectories with
γ = 0 is equal to −1. Since the dynamical system depends continuously on γ, and B is compact,
there exists γ3 > 0 such that for all γ ∈ [0, γ3), the derivative of f along all trajectories with such γ
is less than to −1

2 . This means that any trajectory with such γ passing through B must reach ∂U .
Hence, due to Lemma 2.3, any trajectory with γ ∈ [0,min{γ2, γ3}) starting from any point b ∈ S∗

+

must tend to the equilibrium point v∗, which corresponds to the n-positive solutions of equation
(1.1) with exact power-law behavior (1.2). Putting K = 1 + nmin{γ2, γ3} we complete the proof
of Theorem 2.1.
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