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1 Introduction

Computational Nanotechnology has become an indispensable tool not only in predicting but also
in engineering the properties of multi-functional nano-structured materials. The presence of nano-
heterogeneities in these materials affects or disturbs their elastic field at the local and the global
scale and thus greatly influences their mechanical properties. In this paper we shall study dynami-
cal behaviour of 2D dynamic coupled problem in multifunctional nano-heterogeneous piezoelectric
composites. More in detail, we shall present first modeling of two-dimensional anti-plane (SH) wave
propagation problem in piezoelectric anisotropic solids containing nano-holes or nano-inclusions.
Nano-heterogeneities are considered in two aspects as wave scatters provoking scattered and diffrac-
tion wave fields and also as stress concentrators creating local stress concentrations in the considered
solid.There are no numerical results for dynamic behavior of bounded piezoelectric domain with
heterogeneities under anti-plane load. Validation is done in [1] for infinite piezoelectric plane with
a hole, in [3] for isotropic bounded domain with holes and inclusions and in [2] for piezoelectric
plane with nano-hole or nano-inclusion.

In Section 2 we shall reduce the model under consideration to a system of integro-differntial
equations (IDE) and we shall discretize it by Cellular Nonlinear/Nanoscale Network (CNN) archi-
tecture. Simulations and validation will be provided. Section 3 deals with feedback stabilization of
the IDE CNN model together with simulations.

We shall state the model of piezoelectric solid with heterogeneities under time-harmonic anti-
plane load. LetG ∈ R2 is a bounded piezoelectric domain with a set of inhomogeneities I = ∪Ik ∈ G
(holes, inclusions, nano–holes, nano–inclusions) subjected to time–harmonic load on the boundary
∂G. Note that heterogeneities are of macro size if their diameter is greater than 10−6m, while
heterogeneities are of nano–size if their diameter is less than 10−7m.

The aim is to find the field in every point of M = G \ I, I and to its dynamic behaviour. Using
the methods of continuum mechanics the problem can be formulated in terms of boundary value
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problem for a system of 2-nd order differential equations, see [1, Chapter 2],∣∣∣∣∣∣∣
ρN

∂2u3
∂t2

= cN44∆uN3 + eN15∆uN4 ,

eN15∆uN3 − εN15∆uN4 = 0,

(1)

where x = (x1, x2), ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
is Laplace operator with respect to t, N = M for x ∈ M and

N = I for x ∈ I; uN3 is mechanical displacement, uN4 is electric potential, ρN is the mass density,
cN44 > 0 is the shear stiffness, eN15 ̸= 0 is the piezoelectric constant and εN11 > 0 is the dielectric
permittivity.

We shall consider the case, when I is a nano-hole or nano-inclusion and boundary conditions
on S are

tMj =
∂σS

lj

∂l
on S, or τ I3 + tM3 =

∂σS
l3

∂l
, τ I4 + tM4 =

∂σS
l4

∂l
, (2)

where σS
lj is generalized stress [1], j = 3, 4, l is the tangential vector. Then we shall study boundary

value problem (BVP) (1) with boundary conditions (2).

2 Integro-differential CNN model

BVP (1), (2) is reduced in [1] to integro-differential equation (IDE) using the Fourier transform
and then applying the Gauss theorem [6]. In this paper we shall study the general form of IDE
obtained in [1]. Let us consider the following system of IDE:

∂u(x)

∂τ
= D

∂2u

∂x2
− C1

∫
S

G(u(x)) dx, (3)

where C1 is a constant depending on the ρM , cM44 > 0, eM15 ̸= 0 and εM11 > 0, D is diffusion coefficient,
u = (u3, u4), function G(x) is a function of the displacement vectors u3,4 and the traction τ3,4.

It is known [5] that some autonomous CNN represent an excellent approximation to nonlinear
partial differential equations (PDEs). The intrinsic space distributed topology makes the CNN
able to produce real-time solutions of nonlinear PDEs. There are several ways to approximate the
Laplacian operator in discrete space by a CNN synaptic law with an appropriate A-template. In
our case the CNN model of IDE (3) is:

duij
dt

= DA1 ∗ uij − C1

∫
S

G(uij) dt, 1 ≤ i ≤ n, j = 3, 4, (4)

where A1 is 1-dimensional discretized Laplacian template [5] A1 : (1,−2, 1), ∗ is convolution
operator, n = M ×M is the number of cells of the CNN architecture.

We develop the following algorithm for studying the dynamical behavior of CNN model (4) via
describing function method [4]:

1. First, we apply double Fourier transform F (s, z) to IDE CNN model (4)

F (s, z) =
k=∞∑
k=−∞

z−k

∞∫
−∞

fk(t) exp(−st) dt

from continuous time t and discrete space k to continuous temporal frequency ω, and con-
tinuous spatial frequency Ω such that z = exp(IΩ), s = Iω, I is the imaginary identity and
therefore we obtain:

sU(s, z) = D
[
z−1U(s, z)− 2U(s, z) + zU(s, z)

]
− C1s

−1G(U(s, z)).
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2. We express U(s, z) as a function of G(U(s, z)):

U(s, z) =
C1

sD(z−1 − 2 + z)− s2
G(U)

and obtain the transfer function H(s, z):

H(s, z) =
C1

sD(z−1 − 2 + z)− s2
.

According to the describing function technique [4], the transfer function can be expressed in
terms of temporal frequency ω and spatial frequency Ω:

HΩ(ω) =
C1

IωD(2 cosΩ− 2) + ω2
.

3. We are looking for possible periodic solutions of our CNN model (4) in the form:

uij(t) = ξ(iΩ+ ωt), 1 ≤ i ≤ n, j = 3, 4,

for some function ξ : R → R and for some spatial frequency 0 ≤ Ω ≤ 2π and temporal
frequency ω = 2π

T , where T > 0 is the minimal period.

4. According to the describing function technique [4] the following constraints hold:

R(HΩ(ω)) =
Um

Ym
,

I(HΩ(ω)) = 0.

(5)

5. Thus (5) give us necessary set of equations for finding the unknowns Um, Ω and ω. As
we mentioned before we are looking for a periodic wave solution of (4), therefore Um will
determine approximate amplitude of the wave, and T = 2π

ω will determine the wave speed.
Now according to the describing function technique, if for a given value of Ω we can find the
unknowns (Um, ω), then we can predict the existence of a periodic solution of our CNN IDE
(4) with an amplitude Um and period of approximately T = 2π

ω .

Following the above algorithm the next theorem has been proved:

Theorem 1. CNN IDE (4) of the BVP (1), (2) with circular array of n = L×L cells has periodic
solutions uij(t) with a finite set of spatial frequencies Ω = 2πk

n , 0 ≤ k ≤ n−1 and a period T = 2π
ω .

Let us consider the square domain of piezoelectric solid G1G2G3G4 with a side a. For hetero-
geneities at nano–scale we have: the side of the square is a = 10−7m; material parameters inside
I for hole are 0; material parameters on S = ∂I for hole and for an inclusion are: cS44 = 0.1 cM44 ,
eS15 = 0.1 eM15 , ε

S
11 = 0.1 εM11 , ρ

S = ρM .

Then simulating our CNN IDE model (4) we obtain the following periodic wave solutions (see
Figure 1).

The simulations of IDE CNN model are obtained by simulation system MATCNN applying
4th- order Runge–Kutta integration. In order to minimize the computational complexity and to
maximize the significance of the mean square error only outputs of 4 cells are taken into account.
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Figure 1. Simulation of IDE CNN model (4) with 4 cells

3 Stabilizing feedback control for IDE CNN model

Let us extend the IDE CNN model (4) by adding to each cell the local linear feedback:

duij
dt

= D(ui−1j − 2uij + ui+1j)− C1

∫
S

G(uij) dt− kuij , (6)

where k is the feedback controls coefficient which is assumed to be equal for all cells. The problem
is to prove that this simple and available for the implementation feedback can stabilize the IDE
CNN model (4). In the following we present a proof of this statement and give sufficient condition
on the feedback coefficient values which provide stability of the CNN nonlinear model (6). The
following theorem holds:

Theorem 2. Let the parameters of IDE CNN system and feedback coefficient k (6) have positive
values. Then its linearized model is asymptotically stable for all k > 0.

Figure 2. Simulation of stabilized IDE CNN model (6)
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Proof. Define the quadratic Lyapunov function candidate L(z) = 1
2 z

T z. Then its derivative along

the linearized control IDE CNN is dL(z)
dt = 1

2 z
T (JT (k) + J(k))z = −zTQ(k)z. Therefore, dL(z)

dt < 0
implies a positive definiteness of Q(k). It can be shown that Q(k) positive definiteness implies
k > 0. For verification of the above statement the eigenvalues of J(k) were calculated related on
the values of feedback coefficient k. Stability of the linear system requires that the eigenvalues λi

j ,

i = 1, . . . , 4 satisfy the inequality max
i

Reλi
j < 0.

Simulations of the stabilized IDE CNN are in Figure 2.
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