On Conjugacy of Second-Order Half-Linear Differential Equations on the Real Axis

Jiří Šremr

Institute of Mathematics, Czech Academy of Sciences, branch in Brno, Brno, Czech Republic E-mail: sremr@ipm.cz

On the real axis, we consider the equation

$$\left(|u'|^{\alpha}\operatorname{sgn} u'\right)' + p(t)|u|^{\alpha}\operatorname{sgn} u = 0,$$
(1)

where $p : \mathbb{R} \to \mathbb{R}$ is a locally integrable function and $\alpha > 0$.

A function $u : I \to \mathbb{R}$ is said to be a solution to equation (1) on the interval $I \subseteq \mathbb{R}$ if it is continuously differentiable on I, $|u'|^{\alpha} \operatorname{sgn} u'$ is absolutely continuous on every compact subinterval of I, and u satisfies equality (1) almost everywhere on I. In [6, Lemma 2.1], Mirzov proved that every solution to equation (1) is extendable to the whole real axis. Therefore, speaking about a solution to equation (1), we assume that it is defined on \mathbb{R} . Moreover, for any $a \in \mathbb{R}$, the initial value problem

$$(|u'|^{\alpha} \operatorname{sgn} u')' + p(t)|u|^{\alpha} \operatorname{sgn} u = 0; \quad u(a) = 0, \ u'(a) = 0$$

has only the solution $u \equiv 0$ (see [6, Lemma 1.1]). Hence, a solution u to equation (1) is said to be *non-trivial*, if $u \neq 0$ on \mathbb{R} .

Definition 1. We say that equation (1) is *conjugate on* \mathbb{R} if it has a non-trivial solution with at least two zeros, and *disconjugate on* \mathbb{R} otherwise.

It is clear that in the case $\alpha = 1$, equation (1) reduces to the linear equation

$$u'' + p(t)u = 0. (2)$$

As it is mentioned in [4], a history of the problem of conjugacy of (2) began in the paper by Hawking and Penrose [3]. In [8], Tipler presented an interesting relevance of the study of conjugacy of (2) to the general relativity and improved Hawking–Penrose's criterion, showing that (2) is conjugate on \mathbb{R} if the inequality

$$\liminf_{\substack{t \to +\infty\\\tau \to -\infty}} \int_{\tau}^{\tau} p(s) \, \mathrm{d}s > 0 \tag{3}$$

holds. Later, Peňa [7] proved that the same condition is sufficient also for the conjugacy of halflinear equation (1).

The study of conjugacy of (1) on \mathbb{R} is closely related to the question of oscillation of (1) on the whole real axis. It is known that Sturms's separation theorem holds for equation (1) (see [6, Theorem 1.1]). Therefore, if equation (1) possesses a non-trivial solution with a sequence of zeros tending to $+\infty$ (resp. $-\infty$), then any other its non-trivial solution has also a sequence of zeros tending to $+\infty$ (resp. $-\infty$).

Definition 2. Equation (1) is said to be oscillatory in the neighbourhood of $+\infty$ (resp. in the neighbourhood of $-\infty$) if every its non-trivial solution has a sequence of zeros tending to $+\infty$ (resp. to $-\infty$). We say that equation (1) is oscillatory on \mathbb{R} if it is oscillatory in the neighbourhood of either $+\infty$ or $-\infty$, and non-oscillatory on \mathbb{R} otherwise.

Clearly, if equation (1) is oscillatory on \mathbb{R} , then it is conjugate on \mathbb{R} , as well. It is known that oscillations of (1) in the neighbourhood of $+\infty$ (resp. $-\infty$) can be described by means of behaviour of the Hartman–Wintner type expression

$$\frac{1}{|t|} \int_{0}^{t} \left(\int_{0}^{s} p(\xi) \,\mathrm{d}\xi \right) \mathrm{d}s \tag{4}$$

in the neighbourhood of $+\infty$ (resp. $-\infty$), see [5, Theorem 12.3]. However, expression (4) is useful also in the study of conjugacy of (1) on \mathbb{R} . In particular, efficient conjugacy and disconjugacy criteria for linear equation (2) formulated by means of expression (4) are given in [4]. Abd-Alla and Abu-Risha [1] observed that for the study of conjugacy on whole real axis, it is more convenient to consider a Hartman–Wintner type expression in a certain symmetric form, where all values of the function p are involved simultaneously. They proved in [1], among other things, that equation (1) with a continuous p is conjugate on \mathbb{R} provided that $p \neq 0$ and

$$\liminf_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \left(\int_{-s}^{s} p(\xi) \,\mathrm{d}\xi \right) \mathrm{d}s \ge 0,\tag{5}$$

which obviously improves Peňa's criterion (3). Below, we generalise and supplement criterion (5) and present further statements, which can be applied in the cases not covered by Theorems 3 and 5.

For any $\nu < 1$, we put

$$c(t;\nu) := \frac{1-\nu}{(1+t)^{1-\nu}} \int_{0}^{t} \frac{1}{(1+s)^{\nu}} \left(\int_{-s}^{s} p(\xi) \,\mathrm{d}\xi \right) \mathrm{d}s \text{ for } t \ge 0.$$

We start with a Hartman–Wintner type result, which guarantees that equation (1) is oscillatory on \mathbb{R} (not only conjugate).

Theorem 3. Let $\nu < 1$ be such that either

$$\lim_{t \to +\infty} c(t;\nu) = +\infty,$$

or

$$-\infty < \liminf_{t \to +\infty} c(t;\nu) < \limsup_{t \to +\infty} c(t;\nu).$$

Then equation (1) is oscillatory on \mathbb{R} and consequently, conjugate on \mathbb{R} .

Remark 4. Having $\nu_1, \nu_2 < 1$, one can show that there exists a finite limit $\lim_{t \to +\infty} c(t; \nu_2)$ if and only if there exists a finite limit $\lim_{t \to +\infty} c(t; \nu_1)$, in which case both limits are equal.

In view of Remark 4, Theorem 3 cannot be applied, in particular, if the function $c(\cdot; 1 - \alpha)$ has a finite limit as $t \to +\infty$. A conjugacy criterion covering this case is given in the following statement.

Theorem 5. Let $p \not\equiv 0$ and

$$0 \le \lim_{t \to +\infty} c(t; 1 - \alpha) < +\infty.$$

Then equation (1) is conjugate on \mathbb{R} .

Theorems 3 and 5 yield

Corollary 6. Let $p \not\equiv 0$ and $\nu < 1$ be such that

$$\liminf_{t \to +\infty} c(t;\nu) > -\infty, \quad \limsup_{t \to +\infty} c(t;\nu) \ge 0.$$

Then equation (1) is conjugate on \mathbb{R} .

Corollary 6 generalises several conjugacy criteria known in the existing literature. In particular, [2, Theorem 2.2] can be derived from Corollary 6. Moreover, conjugacy criterion (5) given in [1, Theorem 2.2] follows immediately from Corollary 6 with $\nu := 0$. Corollary 6 also yields the following half-linear extension of [4, Theorem 1].

Corollary 7. Let $p \not\equiv 0$ and the function

$$M: t \longmapsto \frac{1}{|t|} \int_{0}^{t} \left(\int_{0}^{s} p(\xi) \, \mathrm{d}\xi \right) \mathrm{d}s$$

have finite limits as $t \to \pm \infty$. If

$$\lim_{t \to +\infty} M(t) + \lim_{t \to -\infty} M(t) \ge 0,$$

then equation (1) is conjugate on \mathbb{R} .

According to the above said, we conclude that neither of Theorems 3 and 5 can be applied in the following two cases:

$$\lim_{t \to +\infty} c(t; 1 - \alpha) =: c(+\infty) \in] - \infty, 0[$$
(6)

and

$$\liminf_{t \to +\infty} c(t;\nu) = -\infty \text{ for every } \nu < 1.$$
(7)

The case (6)

In the first statement, we require that the function $c(\cdot; 1 - \alpha)$ is at some point far enough from its limit $c(+\infty)$.

Theorem 8. Let (6) hold and

$$\sup\left\{\frac{(1+t)^{\alpha}}{\ln(1+t)}\left[c(+\infty)-c(t;1-\alpha)\right]:\ t>0\right\}>2\left(\frac{\alpha}{1+\alpha}\right)^{1+\alpha}.$$
(8)

Then equation (1) is conjugate on \mathbb{R} .

Remark 9. One can show that if (8) is replaced by

$$\limsup_{t \to +\infty} \frac{(1+t)^{\alpha}}{\ln(1+t)} \left[c(+\infty) - c(t;1-\alpha) \right] > 2\left(\frac{\alpha}{1+\alpha}\right)^{1+\alpha},\tag{9}$$

then we can claim in Theorem 8 that equation (1) is even oscillatory on \mathbb{R} .

Now we put

$$Q_{\alpha}(t) := \frac{(1+t)^{1+\alpha}}{t} \left[c(+\infty) - \int_{-t}^{t} p(s) \, \mathrm{d}s \right], \quad H_{\alpha}(t) := \frac{1}{t} \int_{-t}^{t} (1+|s|)^{1+\alpha} p(s) \, \mathrm{d}s \text{ for } t > 0.$$

Theorem 10. Let (6) hold and

$$\sup \{Q_{\alpha}(t) + H_{\alpha}(t) : t > 0\} > 2.$$

Then equation (1) is conjugate on \mathbb{R} .

Remark 11. One can show that if

$$\limsup_{t \to +\infty} \left(Q_{\alpha}(t) + H_{\alpha}(t) \right) > 2,$$

then we can claim in Theorem 10 that equation (1) is even oscillatory on \mathbb{R} .

The case (7)

First note that, in condition (7), the assumption that $\liminf_{\nu \to +\infty} c(t;\nu) = -\infty$ for every $\nu < 1$ is, in fact, not too restrictive. Indeed, let $\liminf_{t \to +\infty} c(t;\nu_1) = -\infty$ for some $\nu_1 < 1$. Then Remark 4 yields that for any $\nu < 1$, the function $c(\cdot;\nu)$ does not possess any finite limit. Consequently, if there exists $\nu_2 < 1$ such that $\liminf_{t \to +\infty} c(t;\nu_2) > -\infty$, then equation (1) is oscillatory on \mathbb{R} as it follows from Theorem 3.

Proposition 12. Let condition (7) hold and there exist a number $\kappa > \alpha$ such that

$$\limsup_{t \to +\infty} \frac{1}{t^{\kappa}} \int_{-t}^{t} (t - |s|)^{\kappa} p(s) \,\mathrm{d}s > -\infty.$$
(10)

Then equation (1) is oscillatory on \mathbb{R} and consequently, conjugate on \mathbb{R} .

Finally, we give a statement which can be applied in the case, when condition (7) holds, but (10) is violated for every $\kappa > \alpha$, i.e.,

$$\lim_{t \to +\infty} \frac{1}{t^{\kappa}} \int_{-t}^{t} (t - |s|)^{\kappa} p(s) \, \mathrm{d}s = -\infty \text{ for every } \kappa > \alpha$$

(it may happen as can be justified by an example).

Theorem 13. Let there exist a number $\kappa > \alpha$ such that

$$\sup\left\{\frac{1}{t^{\kappa-\alpha}}\int_{-t}^{t}(t-|s|)^{\kappa}p(s)\,\mathrm{d}s:\ t>0\right\}>\frac{2}{\kappa-\alpha}\left(\frac{\kappa}{1+\alpha}\right)^{1+\alpha}$$

Then equation (1) is conjugate on \mathbb{R} .

Remark 14. Observe that Theorem 13 does not require assumption (7), it is a general statement applicable without regard to behaviour of the function $c(\cdot; \nu)$.

Acknowledgement

The research was supported by RVO:67985840.

References

- M. Z. Abd-Alla and M. H. Abu-Risha, Conjugacy criteria for the half-linear second order differential equation. *Rocky Mountain J. Math.* 38 (2008), No. 2, 359–372.
- [2] O. Došlý and A. Elbert, Conjugacy of half-linear second-order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), No. 3, 517–525.
- [3] S. W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. London Ser. A 314 (1970), 529–548.
- [4] T. Chantladze, A. Lomtatidze, and D. Ugulava, Conjugacy and disconjugacy criteria for second order linear ordinary differential equations. Arch. Math. (Brno) **36** (2000), No. 4, 313–323.
- [5] J. D. Mirzov, Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica, 14. Masaryk University, Brno, 2004.
- [6] J. D. Mirzov, On some analogs of Sturm's and Kneser's theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), No. 2, 418–425.
- S. Peňa, Conjugacy criteria for half-linear differential equations. Arch. Math. (Brno) 35 (1999), No. 1, 1–11.
- [8] F. J. Tipler, General relativity and conjugate ordinary differential equations. J. Differential Equations 30 (1978), No. 2, 165–174.