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On the real axis, we consider the equation(
|u′|α sgnu′

)′
+ p(t)|u|α sgnu = 0, (1)

where p : R → R is a locally integrable function and α > 0.
A function u : I → R is said to be a solution to equation (1) on the interval I ⊆ R if it is

continuously differentiable on I, |u′|α sgnu′ is absolutely continuous on every compact subinterval
of I, and u satisfies equality (1) almost everywhere on I. In [6, Lemma 2.1], Mirzov proved that
every solution to equation (1) is extendable to the whole real axis. Therefore, speaking about
a solution to equation (1), we assume that it is defined on R. Moreover, for any a ∈ R, the initial
value problem (

|u′|α sgnu′
)′
+ p(t)|u|α sgnu = 0; u(a) = 0, u′(a) = 0

has only the solution u ≡ 0 (see [6, Lemma 1.1]). Hence, a solution u to equation (1) is said to be
non-trivial, if u ̸≡ 0 on R.

Definition 1. We say that equation (1) is conjugate on R if it has a non-trivial solution with at
least two zeros, and disconjugate on R otherwise.

It is clear that in the case α = 1, equation (1) reduces to the linear equation

u′′ + p(t)u = 0. (2)

As it is mentioned in [4], a history of the problem of conjugacy of (2) began in the paper by Hawking
and Penrose [3]. In [8], Tipler presented an interesting relevance of the study of conjugacy of (2)
to the general relativity and improved Hawking–Penrose’s criterion, showing that (2) is conjugate
on R if the inequality

lim inf
t→+∞
τ→−∞

t∫
τ

p(s) ds > 0 (3)

holds. Later, Peňa [7] proved that the same condition is sufficient also for the conjugacy of half-
linear equation (1).

The study of conjugacy of (1) on R is closely related to the question of oscillation of (1) on
the whole real axis. It is known that Sturms’s separation theorem holds for equation (1) (see [6,
Theorem 1.1]). Therefore, if equation (1) possesses a non-trivial solution with a sequence of zeros
tending to +∞ (resp. −∞), then any other its non-trivial solution has also a sequence of zeros
tending to +∞ (resp. −∞).

Definition 2. Equation (1) is said to be oscillatory in the neighbourhood of +∞ (resp. in the
neighbourhood of −∞) if every its non-trivial solution has a sequence of zeros tending to +∞ (resp.
to −∞). We say that equation (1) is oscillatory on R if it is oscillatory in the neighbourhood of
either +∞ or −∞, and non-oscillatory on R otherwise.
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Clearly, if equation (1) is oscillatory on R, then it is conjugate on R, as well. It is known that
oscillations of (1) in the neighbourhood of +∞ (resp. −∞) can be described by means of behaviour
of the Hartman–Wintner type expression

1

|t|

t∫
0

( s∫
0

p(ξ) dξ

)
ds (4)

in the neighbourhood of +∞ (resp. −∞), see [5, Theorem 12.3]. However, expression (4) is useful
also in the study of conjugacy of (1) on R. In particular, efficient conjugacy and disconjugacy
criteria for linear equation (2) formulated by means of expression (4) are given in [4]. Abd-Alla
and Abu-Risha [1] observed that for the study of conjugacy on whole real axis, it is more convenient
to consider a Hartman–Wintner type expression in a certain symmetric form, where all values of
the function p are involved simultaneously. They proved in [1], among other things, that equation
(1) with a continuous p is conjugate on R provided that p ̸≡ 0 and

lim inf
t→+∞

1

t

t∫
0

( s∫
−s

p(ξ) dξ

)
ds ≥ 0, (5)

which obviously improves Peňa’s criterion (3). Below, we generalise and supplement criterion (5)
and present further statements, which can be applied in the cases not covered by Theorems 3 and 5.

For any ν < 1, we put

c(t; ν) :=
1− ν

(1 + t)1−ν

t∫
0

1

(1 + s)ν

( s∫
−s

p(ξ) dξ

)
ds for t ≥ 0.

We start with a Hartman–Wintner type result, which guarantees that equation (1) is oscillatory
on R (not only conjugate).

Theorem 3. Let ν < 1 be such that either

lim
t→+∞

c(t; ν) = +∞,

or
−∞ < lim inf

t→+∞
c(t; ν) < lim sup

t→+∞
c(t; ν).

Then equation (1) is oscillatory on R and consequently, conjugate on R.

Remark 4. Having ν1, ν2 < 1, one can show that there exists a finite limit lim
t→+∞

c(t; ν2) if and

only if there exists a finite limit lim
t→+∞

c(t; ν1), in which case both limits are equal.

In view of Remark 4, Theorem 3 cannot be applied, in particular, if the function c( · ; 1 − α)
has a finite limit as t → +∞. A conjugacy criterion covering this case is given in the following
statement.

Theorem 5. Let p ̸≡ 0 and
0 ≤ lim

t→+∞
c(t; 1− α) < +∞.

Then equation (1) is conjugate on R.

Theorems 3 and 5 yield



International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia 143

Corollary 6. Let p ̸≡ 0 and ν < 1 be such that

lim inf
t→+∞

c(t; ν) > −∞, lim sup
t→+∞

c(t; ν) ≥ 0.

Then equation (1) is conjugate on R.

Corollary 6 generalises several conjugacy criteria known in the existing literature. In particular,
[2, Theorem 2.2] can be derived from Corollary 6. Moreover, conjugacy criterion (5) given in [1,
Theorem 2.2] follows immediately from Corollary 6 with ν := 0. Corollary 6 also yields the following
half-linear extension of [4, Theorem 1].

Corollary 7. Let p ̸≡ 0 and the function

M : t 7−→ 1

|t|

t∫
0

( s∫
0

p(ξ) dξ

)
ds

have finite limits as t → ±∞. If

lim
t→+∞

M(t) + lim
t→−∞

M(t) ≥ 0,

then equation (1) is conjugate on R.

According to the above said, we conclude that neither of Theorems 3 and 5 can be applied in
the following two cases:

lim
t→+∞

c(t; 1− α) =: c(+∞) ∈ ]−∞, 0[ (6)

and
lim inf
t→+∞

c(t; ν) = −∞ for every ν < 1. (7)

The case (6)

In the first statement, we require that the function c( · ; 1−α) is at some point far enough from its
limit c(+∞).

Theorem 8. Let (6) hold and

sup

{
(1 + t)α

ln(1 + t)

[
c(+∞)− c(t; 1− α)

]
: t > 0

}
> 2

( α

1 + α

)1+α
. (8)

Then equation (1) is conjugate on R.

Remark 9. One can show that if (8) is replaced by

lim sup
t→+∞

(1 + t)α

ln(1 + t)

[
c(+∞)− c(t; 1− α)

]
> 2

( α

1 + α

)1+α
, (9)

then we can claim in Theorem 8 that equation (1) is even oscillatory on R.

Now we put

Qα(t) :=
(1 + t)1+α

t

[
c(+∞)−

t∫
−t

p(s) ds

]
, Hα(t) :=

1

t

t∫
−t

(1 + |s|)1+αp(s) ds for t > 0.
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Theorem 10. Let (6) hold and

sup
{
Qα(t) +Hα(t) : t > 0

}
> 2.

Then equation (1) is conjugate on R.

Remark 11. One can show that if

lim sup
t→+∞

(
Qα(t) +Hα(t)

)
> 2,

then we can claim in Theorem 10 that equation (1) is even oscillatory on R.

The case (7)

First note that, in condition (7), the assumption that lim inf
ν→+∞

c(t; ν) = −∞ for every ν < 1 is, in

fact, not too restrictive. Indeed, let lim inf
t→+∞

c(t; ν1) = −∞ for some ν1 < 1. Then Remark 4 yields

that for any ν < 1, the function c( · ; ν) does not possess any finite limit. Consequently, if there
exists ν2 < 1 such that lim inf

t→+∞
c(t; ν2) > −∞, then equation (1) is oscillatory on R as it follows

from Theorem 3.

Proposition 12. Let condition (7) hold and there exist a number κ > α such that

lim sup
t→+∞

1

tκ

t∫
−t

(t− |s|)κp(s) ds > −∞. (10)

Then equation (1) is oscillatory on R and consequently, conjugate on R.

Finally, we give a statement which can be applied in the case, when condition (7) holds, but
(10) is violated for every κ > α, i. e.,

lim
t→+∞

1

tκ

t∫
−t

(t− |s|)κp(s) ds = −∞ for every κ > α

(it may happen as can be justified by an example).

Theorem 13. Let there exist a number κ > α such that

sup

{
1

tκ−α

t∫
−t

(t− |s|)κp(s) ds : t > 0

}
>

2

κ− α

( κ

1 + α

)1+α
.

Then equation (1) is conjugate on R.

Remark 14. Observe that Theorem 13 does not require assumption (7), it is a general statement
applicable without regard to behaviour of the function c( · ; ν).
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