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The questions of determining the conditions of solvability and finding the solutions for various
types of boundary value problems remain actual for a long period of time. A vast number of scientific
works are devoted to the investigation of different aspects of the question under consideration. The
Noetherian boundary value problems have been considered and studied in [8]. The works [1] and
[4] are devoted to the study of autonomous boundary value problems.

The weakly nonlinear boundary value problems have been considered in [1, 7]. The conditions
for the solvability of boundary value problems with perturbation for systems of linear differential
equations of the first order have been studied in [7, 8]. The conditions of solvability of degenerated
boundary value problems, bifurcations and branching of their solutions are considered in [8]. In [6],
the author considers weakly perturbed boundary value problems for systems of linear differential
equations of the second order for which the conditions of solvability are found.

We study a linear inhomogeneous boundary value problem with perturbation

(P (t)x′)′ −Q(t)x− εQ1(t)x = f(t), t ∈ [a, b], (1)

lx( · , ε) = α+ εl1x( · , ε). (2)

Here, [a, b] is a segment on which we consider the linear boundary value problem with per-
turbations (1), (2), x = x(t, ε) – is a twice continuously differentiable unknown vector-function
x′′( · , ε) ∈ C2([a, b]× (0, ε0]). P (t), Q(t), Q1(t) are square matrices of dimension n. Elements of the
matrix P (t) are real, continuously differentiable on the segment [a, b] functions P (t) ∈ C1([a, b]); El-
ements of the matrices Q(t) and Q1(t) are continuous on the segment [a, b]: Q(t), Q1(t) ∈ C([a, b]).
The matrix P (t) is nondegenerated detP (t) ̸= 0. The function f(t) is a continuous n-dimensional
on the segment [a, b] vector-function f(t) ∈ C([a, b]). l, l1 are linear bounded m-dimensional
vector-functionals defined on the space n-dimensional piecewise continuous vector functions l,
l1 : C([a, b]) → Rm. α is an m-dimensional real vector α ∈ Rm; ε is a small nonnegative pa-
rameter.

To the boundary value problem with perturbation (1), (2) we put into correspondence the
generating boundary value problem

(P (t)x′)
′ −Q(t)x = f(t), t ∈ [a, b], (3)

lx( · , ε) = α. (4)

The system (3) of differential equations of second order has a general solution of the type
x(t) = X(t)c + x(t), c ∈ R2n, where X(t) is an (n × 2n)-dimensions fundamental matrix of the
homogeneous (f(t) = 0)system of second order (3) which consists of 2n linear independent solutions

of that homogeneous system (f(t) = 0) (3); The vector-function x(t) =
b∫
a
K(t, s)P−1(s)f(s) ds is a

partial solution of the system of differential equations (3); K(t, s) is the Cauchy (n×n)-dimensional
matrix [?, ?]. D is a rectangula,(m × 2n)-dimensional matrix formed under the action of the m-
dimensional functional l onto the fundamental matrix X(t), rankD = n1, n1 < min(2n,m). The
matrix D∗ is transposed to the matrix D. The (2n×m)-dimensional matrix D+ is Moore–Penrose
pseudo-inverse to the matrix D [2, 5, 6, 8]. By PD we denote the (2n × 2n)-dimensional matrix-
orthoprojector PD : R2n → N(D), N(D) = PDR

2n. The matrix N(D) is the null-space of the
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matrix D: dimN(D) = 2n− rankD = 2n− n1 = r. By PD∗ we denoted the (m×m)-measurable
matrix-orthoprojector PD∗ : Rm → N(D∗), N(D∗) = PD∗Rm. The matrix N(D∗) is the null-space
of the matrix D∗: dimN(D∗) = 2n − rankD∗ = 2n − n1 = r. Thus the matrix N(D) is of
dimension r: dimN(D) = 2n − rankD = 2n − n1 = r, and the matrix N(D∗) is of dimension d:
dimN(D∗) = m − rankD = m − n1 = d. Consequently, rankPD = r, rankPD∗ = d, this implies
that the matrix PD consists of r linearly independent columns, and the matrix PD∗ consists of d
linearly independent columns. Thus the (2n× 2n)-dimensional matrix PD can be replaced by the
(2n × r)-dimensional matrix PDr which consists of r linearly independent columns of the matrix
PD; the (m×m)-dimensional matrix PD∗ can be replaced by (d×m)-dimensional matrix PD∗

d
which

consists of d linearly independent series of the matrix PD∗ [3, 5].
For the generating boundary value problem (3), (4) the theorem below is fulfilled [5].

Theorem 1 (Critical case). Let the condition rankD = n1 < min{2n,m} be fulfilled. Then the
homogeneous (f(t) = 0, α = 0) boundary value problem (3), (4) has r, (r = 2n − n1) and only r
linearly independent solutions. The inhomogeneous boundary value problem (3), (4) is solvable if
and only if the vector-function f(t) ∈ C([a, b]) and the constant vector α ∈ Rm satisfy the condition
of solvability

PD∗
d

[
α− lx( · )

]
= 0 (d = m− n1). (5)

If these conditions are fulfilled, the boundary value problem (3), (4) has an r-parametric set of
solutions x(t, cr) = Xr(t)cr+(G[f ])(t)+X(t)D+α, t ∈ [a, b], ∀ cr ∈ Rr, where Xr(t) is the (n×n)-
matrix whose columns consist of a full system of r linearly independent solutions of the homogeneous
system of second order (3): Xr(t) = X(t)PDr ; PDr is the (2n×r)-dimensional matrix-orthoprojector
consisting of r linearly independent columns of the matrix PD; cr is an arbitrary vector column from
the space Rr; (G[f ])(t), t ∈ [a, b] is the Greens generalized operator acting onto an arbitrary vector-
function f(t) ∈ C([a, b]):

(G[f ])(t)
def
=

b∫
a

K(t, s)P−1(s)f(s) ds−X(t)D+l

b∫
a

K( · , s)P−1(s)f(s) ds.

We have to define whether there exist the conditions under fulfillment of which the boundary
value problem with perturbation (1), (2) will be solvable under the condition that its generating
boundary value problem (3), (4) has no solutions. We consider the case, where the generating
boundary value problem (3), (4) has no solutions for arbitrary inhomogeneities f(t) ∈ C([a, b]) and
α ∈ Rm; this implies that for the above problem the critical case(rankD = n1 < n) is valid, and re-
spectively, for arbitrary inhomogeneities f(t) ∈ C([a, b]), α ∈ Rm, for the generating boundary value
problem (3), (4) the solvability criterion (5) fails to be fulfilled. For the boundary value problem

(1), (2) using the (d×r)-measurable matrix B0 := PD∗
d

{
l1Xr( · )−l

b∫
a
K( · , s)P−1(s)Q1(s)Xr(s) ds

}
,

the conditions of solvability of the problem under consideration and the condition of unique-

ness of its solution, having the form of converging Laurent series x( · , ε) =
∞∑

k=−1

εkxk(t), are

found. Here, PB0 is the (r × r)-dimensional matrix-orthoprojector, PB0 : Rr → N(B0); B
∗
0
is the

(r × d)-dimensional matrix, transposed to the matrix B0, PB∗
0
is the (d × d)-dimensional matrix-

orthoprojector, PB∗
0
: Rd → N(B∗

0
); B+

0
is the (r × d)-dimensional matrix, pseudo-inverse due to

Moore–Penrose to the matrix B0 [6]. In the case, where the condition PB∗
0
= 0 is not fulfilled, for de-

termination of conditions of solvability of the problem under consideration, the (d× r)-measurable

matrix B1: B1 := PD∗
d

{
l1G1( · ) − l

b∫
a
K( · , s)P−1(s)Q1(s)G1(s) ds

}
has been constructed, where

G1(t) is the (n× r)-dimensional matrix of the type G1(t) = (G[Q1(s)Xr(s)])(t) +X(t)D+l1Xr( · ).
Here, B∗

1
is the (r × d)-dimensional matrix, transposed to the matrix B1; PB∗

1
is the (d × d)-

dimensional matrix-orthoprojector, PB∗
1
: Rd → N(B∗

1
). In the case, where the conditions PB∗

0
= 0,
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PB∗
1
PB∗

0
= 0 for the problem (1), (2) are not fulfilled, to find the conditions of solvability of that

problem, the (d × r)-dimensional matrix B1 := −PB∗
0
B1PB0 has been constructed. The following

theorem is valid.

Theorem 2. Let the generating boundary value problem (3), (4) for arbitrary inhomogeneities
f(t) ∈ C([a, b]) and α ∈ Rm have no solutions. For the boundary value problem (1), (2) the
conditions PB∗

0
̸= 0, PB∗

1
PB∗

0
̸= 0) are fulfilled.

Then the boundary value problem with perturbation (1), (2) is solvable if the condition PB
∗
1
PB∗

0
=

0 is fulfilled, and in this case, for a sufficiently small fixed ε ∈ (0, ε0] it has a solution in a form of a

part of converging Laurent’s series x( · , ε) =
∞∑

k=−3

εkxk(t), the coefficients xk, k ≥ −3 of Laurent’s

series are sought from the corresponding boundary value problems constructed after substitution of
the Laurent’s series into the problem (1), (2) and equating the corresponding coefficients for each
from powers ε.
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