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1 Introduction and Preliminaries

We consider an autonomous system of differential equations

ẋ = F (x), x ∈ Rk (1)

that possesses m-dimensional invariant toroidal manifold Tm. For a comprehensive description of
the dynamics in the vicinity of invariant toroidal manifold it is convenient to introduce so-called
local coordinates (φ1, . . . , φm, h1, . . . , hn), n = k −m, where φ = (φ1, . . . , φm) is a point on torus
Tm and h = (h1, . . . , hn) is from Euclidean space in transversal direction to the torus. The change
of variables is performed in such a way that the invariant toroidal manifold gets a representation
h = 0, φ ∈ Tm in new coordinates. System (1) transforms into

φ̇ = a(φ, h), ḣ = f(φ, h) (2)

with f(φ, 0) ≡ 0. The last condition guarantees the existence of invariant toroidal set h = 0, φ ∈ Tm
that is called trivial.

Problems of the existence, stability and an approximate construction of non-trivial invariant
toroidal manifolds for system (2) are treated carefully in [10]. The central object of investigation
is a so-called linear extension of dynamical system on torus

φ̇ = a(φ), ḣ = A(φ)h+ f(φ), (3)

where a ∈ CLip(Tm) is an m-dimensional vector function, A, f ∈ C(Tm) are n × n square matrix
and n-dimensional vector function respectively; C(Tm) stands for a space of continuous 2π-periodic
with respect to each of the variables φj , j = 1, . . . ,m functions defined on the surface of the torus
Tm. The main ingredient in the investigation of the existence and stability analysis of non-trivial
invariant tori of system (3) is Green function introduced in [8]. The existence of such a function is
sufficient for the existence of non-trivial invariant torus for system (3). Later a numerous of works
by different authors have developed and extended this approach to a broad classes of equations
including impulsive [4, 3], stochastic [11] and infinite-dimensional [7] and equations with delay [9].
This method of investigation got a Green-Samoilenko function method name [7].

A deep connection of the existence of invariant tori and quadratic functions was explored in [1].
A Lyapunov-like approach was proposed for stability analysis of invariant tori and their robustness
properties characterization. A question of the preservation of invariant tori under perturbations of
the right-hand side was also considered. It has been proven that a sufficiently small perturbations
do not ruin the invariant torus, which enables it to become a convenient object for investigations of
quasi-periodic motions of dynamical system. As it is widely known, quasi-periodic solution may be
easily transformed into a periodic one by a small perturbation of right-hand side. The existence of
invariant tori that is a carrier of quasi-periodic trajectories ensures the existence of multi-frequency
oscillations in the system. It makes this theory well-adapted for the applications in electronics and
radiophysics with complex oscillatory processes of several frequencies.
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2 Motivation

In this paper we are interested in stability analysis of trivial invariant torus of the system

φ̇ = a(φ), ḣ = A(φ, h)h, (4)

where φ ∈ Tm, h ∈ Rn.
We begin with a simple example that demonstrates that the existing theorems for stability

analysis of invariant tori are too restrictive and set too severe constraints on the system. On the
other hand, we propose relaxed conditions that are applicable to a wide class of equations and
provide a deeper understanding of the processes in a vicinity of invariant set.

Example 1. Consider system (4) with a(φ) =

(
− sin2 φ1

2
ω

)
and A(φ, h) = −1 + λ sinφ1, where

λ > 0 is an arbitrary fixed constant value from R.

System from the example may be analyzed in two steps:

φ̇ = a(φ), ḣ = −1 · h =⇒ φ̇ = a(φ), ḣ = (−1 + λ sinφ1)h, (5)

where λ cosφ is considered as a perturbation term. The fundamental matrix Ωt
τ (φ) of the system

ḣ = −h has a form Ωt
τ (φ) = e−(t−τ). It means that system φ̇ = a(φ), ḣ = −h has an exponentially

stable trivial invariant torus h = 0, φ ∈ Tm. The previously known perturbation theorems guarantee
stability of trivial torus of system (5) in the case of a sufficiently small perturbation term, e.g. there
exists δ > 0 such that for any perturbation with ∥λ cosϕ∥ ≤ δ system (5) has an exponentially
stable trivial invariant toroidal manifold. In other words, a stability of manifold is guaranteed only
for a sufficiently small constant λ. However a numerical simulations provides an intuition that the
trivial torus is actually asymptotically stable even for large enough values of the constant parameter
λ. Indeed, for the cases of λ = 1, λ = 10, and λ = 100 a qualitative behavior of solutions to system
(5) coincide and all the trajectories tend to the invariant set as time t → ∞. This fact originate
a hypothesis that a smallness of a perturbation term is too severe constraint and can be relaxed.
This is the main motivation for this research.

Further propositions deeply rely on the results from [5, 6].

3 Results

Denoting A(φ, h) := A(φ) +A1(φ), system (4) can be represented in the following form

dφ

dt
= a(φ),

dh

dt
= [A(φ) +A1(φ, h)]h, (6)

where A1 is a perturbation term from C(Tm,Rn), ∥h∥ ≤ d ∈ R+. Let Ht
τ (φ) be a fundamental

matrix of the unperturbed system

dφ

dt
= a(φ),

dh

dt
= A(φ)h,

that depends on φ ∈ Tm as a parameter and turns into an identical matrix when t = τ , e.g.
Hτ

τ (φ) ≡ I.

Definition 1 ([2]). A point φ is called wandering if there exist its neighbourhood U(φ) and a
positive number T > 0 such that

U(φ) ∩ φt(U(φ)) = 0 for t ≥ T.
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Let W be a set of all wandering points of dynamical system and Ω = Tm \ W be a set of
nonwandering points. From the compactness of a torus it follows that the set Ω is nonempty and
compact. Since function A1(φ, h) is continuous on a compact set, there exists

sup
φ∈Ω,∥h∥≤d

A1(φ, h) = ã1.

The following proposition sets constraints on the perturbation term in order to guarantee the
exponential stability of the trivial invariant torus h = 0, φ ∈ Tm. These constraints are relaxed
comparing to the previously known [1, 10] and demand the perturbation to be small in non-
wandering set of dynamical system Ω, but not on the whole surface of the torus Tm.

Theorem 1. Let the fundamental matrix Ht
τ (φ) satisfy the estimate

∥Ht
τ (φ)∥ ≤ Ke−γ(t−τ) for t ≥ τ

with some K ≥ 1, γ > 0. Then if the following condition holds

Kã1 < γ,

then system (6) has an exponentially stable trivial invariant toroidal manifold.

Example 2 (revisited). The dynamical system on two-dimensional torus(
φ̇1

φ̇2

)
=

(
− sin2

φ1

2
ω

)

has a very simple structure of limit sets and recurrent trajectories. In particular a non-wandering
set Ω consists of only one meridian φ1 = 0:

Ω =
{
φ ∈ T2 : φ1 = 0, φ2 ∈ T1

}
.

A point that is starting on meridian spinning with constant velocity ω. All other trajectories tend
to Ω by spirals. The estimate for the perturbation term is

sup
φ∈Ω, ∥x∥≤d

λ sinφ1 = λ sin 0 = 0.

It means that the system from the example and the perturbation term satisfy the conditions of

Theorem 1 and the trivial invariant tori of system (4) with a(φ) =

(
− sin2 φ1

2
ω

)
and A(φ, h) =

−1 + λ sinφ1 is exponentially stable for an arbitrary fixed constant λ.

4 Discussion

We have proved that it is sufficient for a perturbation term to be small only in a non-wandering set
Ω in order to preserve an exponential stability of a trivial invariant torus of a perturbed system.
New theorem allows to investigate qualitative behavior of solutions of a class of nonlinear systems
that have a simple structure of limit sets and recurrent trajectories. The constraints of Theorem 1
are less restrictive than of the previously known ones. However it is worth to note that if the first
equation of the unperturbed system is φ̇ = ω = const, that is very frequent in applications, then
its non-wandering set Ω coincides with a whole torus and Theorem 1 has no advantages compared
to results from [1, 10].
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