Sign-Constant Periodic Solutions to Second-Order Differential Equations with a Sub-Linear Non-Linearity

Alexander Lomtatidze

Institute of Mathematics, Czech Academy of Sciences, branch in Brno, Brno, Czech Republic; Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic

E-mail: lomtatidze@fme.vutbr.cz

Jiří Šremr

Institute of Mathematics, Czech Academy of Sciences, branch in Brno, Brno, Czech Republic E-mail: sremr@ipm.cz

We are interested in the question on the existence and uniqueness of a **non-trivial non-negative** (resp. **positive**) solution to the periodic boundary value problem

$$u'' = p(t)u + (-1)^{i}q(t,u); \quad u(0) = u(\omega), \quad u'(0) = u'(\omega).$$
(1_i)

Here, $p \in L([0, \omega])$, $q : [0, \omega] \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function, and $i \in \{1, 2\}$. Under a solution to problem (1), as usually, we understand a function $u : [0, \omega] \to \mathbb{R}$ which is absolutely continuous together with its first derivative, satisfies given equation almost everywhere and verifies periodic conditions. A solution u to problem (1) is referred as a sign-constant solution if there exists $i \in \{0, 1\}$ such that $(-1)^i u(t) \ge 0$ for $t \in [0, \omega]$, and a sign-changing solution otherwise.

Definition 1. We say that the function $p \in L([0, \omega])$ belongs to the set $\mathcal{V}^+(\omega)$ (resp. $\mathcal{V}^-(\omega)$) if for any function $u \in AC^1([0, \omega])$ satisfying

$$u''(t) \ge p(t)u(t)$$
 for a.e. $t \in [0, \omega], \quad u(0) = u(\omega), \quad u'(0) = u'(\omega),$

the inequality

$$u(t) \ge 0$$
 for $t \in [0, \omega]$ (resp. $u(t) \le 0$ for $t \in [0, \omega]$)

is fulfilled.

Definition 2. We say that the function $p \in L([0, \omega])$ belongs to the set $\mathcal{V}_0(\omega)$ if the problem

$$u'' = p(t)u; \quad u(0) = u(\omega), \quad u'(0) = u'(\omega)$$

has a nontrivial sign-constant solution.

Theorem 1₁. Let $p \in \mathcal{V}^{-}(\omega)$,

$$\left. \begin{array}{l} q(t,x) \leq q_0(t,x) \ \text{for a.e. } t \in [0,\omega] \ \text{and all } x \geq x_0, \\ x_0 \geq 0, \quad q_0 : [0,\omega] \times [x_0, +\infty[\to \mathbb{R} \ \text{is a Carathéodory function}, \\ q_0(t,\cdot) : [x_0, +\infty[\to \mathbb{R} \ \text{is non-decreasing for a.e. } t \in [0,\omega], \\ \\ \lim_{x \to +\infty} \frac{1}{x} \int_0^{\omega} |q_0(s,x)| \, \mathrm{d}s = 0, \end{array} \right\}$$

$$\left. \begin{array}{l} (H_1) \\ (H_2) \\ (H_3) \\ (H_4) \\ (H_4) \\ (H_5) \\ ($$

and there exist a function $\alpha \in AC^1([0, \omega])$ satisfying

$$\alpha''(t) \ge p(t)\alpha(t) - q(t,\alpha(t)) \text{ for a.e. } t \in [0,\omega], \quad \alpha(0) = \alpha(\omega), \quad \alpha'(0) \ge \alpha'(\omega)$$

Then problem (1_1) has at least one solution u such that

$$u(t) \ge \alpha(t)$$
 for $t \in [0, \omega]$.

Theorem 1₂. Let $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$ and

Let, moreover,

$$q(t,0) \le 0 \quad \text{for a.e.} \quad t \in [0,\omega] \tag{2}$$

and there exist a function $\beta \in AC^1([0, \omega])$ satisfying

$$\beta(t) > 0 \text{ for } t \in [0, \omega],$$

$$\beta''(t) \le p(t)\beta(t) + q(t, \beta(t)) \text{ for a.e. } t \in [0, \omega], \quad \beta(0) = \beta(\omega), \quad \beta'(0) \le \beta'(\omega).$$
(3)

Then problem (1_2) has at least one solution u such that

$$u(t) \ge 0 \quad \text{for } t \in [0, \omega], \quad u \not\equiv 0, \tag{4}$$

and, moreover,

$$u(t_u) \ge \beta(t_u) \text{ for some } t_u \in [0, \omega].$$
(5)

The following example shows that, under the assumptions of Theorem 1_2 , problem (1_2) may have a solution u satisfying (4) and (5), which is not positive.

Example 1. Consider the problem

$$u'' = -u + 3(1 - \sin t)\sqrt{|u|} \operatorname{sgn} u; \quad u(0) = u(2\pi), \quad u'(0) = u'(2\pi).$$
(6)

Clearly, problem (6) is a particular case of (1_2) , where $\omega := 2\pi$, p(t) := -1 for $t \in [0, 2\pi]$, and

$$q(t,x) := 3(1-\sin t)\sqrt{|x|} \operatorname{sgn} x \text{ for } t \in [0,2\pi], \ x \in \mathbb{R}$$

It is not difficult to verify that $p \notin \mathcal{V}^-(2\pi) \cup \mathcal{V}_0(2\pi) \cup \mathcal{V}^+(2\pi)$, hypothesis (H_2) holds with $q_0(t, x) := 3(1 - \sin t)\sqrt{x}$, and condition (2) is fulfilled. Moreover, one can show that there exists a function $\beta \in AC^1([0, 2\pi])$ satisfying condition (3) and

$$0 < \beta(t) \le 1$$
 for $t \in [0, 2\pi]$.

On the other hand, the function

$$u(t) := (1 + \sin t)^2$$
 for $t \in [0, 2\pi]$

is a solution to problem (6), which satisfies conditions (4) and (5), however, it is not positive.

Now we present efficient conditions guaranteeing the existence of a non-trivial sign-constant (resp. positive) solution to problem (1_i) . Introduce the assumption:

$$\begin{array}{l} q(t,x) \geq xg(t,x) \quad \text{for a.e. } t \in [0,\omega] \text{ and all } x \in]0,\delta[\,, \\ 0 < \delta \leq +\infty, \quad g: [0,\omega] \times]0, \delta[\to \mathbb{R} \text{ is a locally Carathéodory function}, \\ g(t,\cdot):]0, \delta[\to \mathbb{R} \text{ is non-increasing for a.e. } t \in [0,\omega]. \end{array} \right\}$$
(G)

Corollary 1₁. Let $p \in \mathcal{V}^{-}(\omega)$, hypotheses (H_1) and (G) be satisfied, and

$$\lim_{x \to \delta^{-}} g(t, x) \le 0 \quad \text{for a.e.} \quad t \in [0, \omega], \quad \lim_{x \to 0^{+}} \int_{0}^{\omega} g(s, x) \, \mathrm{d}s = +\infty.$$

$$\tag{7}$$

Then problem (1_1) has at least one **positive** solution.

Corollary 1₂. Let $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$, $q(\cdot, 0) \equiv 0$, hypotheses (H_2) and (G) be satisfied, and

$$\lim_{x \to 0+} \int_{E} g(s, x) \, \mathrm{d}s = +\infty \quad \text{for every} \quad E \subseteq [0, \omega], \quad \text{meas} \, E > 0.$$
(8)

Then problem (1_2) has at least one **non-trivial non-negative** solution.

If, in addition, $p \in \mathcal{V}^+(\omega)$ and

$$q(t,x) \ge 0 \text{ for a.e. } t \in [0,\omega] \text{ and all } x \ge 0,$$

$$(9)$$

then problem (1_2) has at least one **positive** solution and, moreover, any solution to this problem is either positive or non-positive.

If $p \in \mathcal{V}^+(\omega)$ in Corollary 1₂, then assumption (8) can be relaxed to

$$\lim_{x \to 0+} \int_{0}^{\omega} g(s, x) \, \mathrm{d}s = +\infty.$$
(10)

Corollary 2₂. Let $p \in \mathcal{V}^+(\omega)$, $q(\cdot, 0) \equiv 0$, and hypotheses (H_2) and (G) be satisfied. Let, moreover, condition (10) hold and

$$\lim_{x \to \delta-} g(t, x) \ge 0 \text{ for a.e. } t \in [0, \omega].$$

Then problem (1_2) has at least one **non-trivial non-negative** solution.

If, in addition, (9) holds, then problem (1_2) has at least one **positive** solution and, moreover, any solution to this problem is either positive or non-positive.

The next statements show that, under the hypothesis

for every
$$b > a > 0$$
 there exists $h_{ab} \in L([0, \omega])$ such that
 $h_{ab}(t) \ge 0$ for a.e. $t \in [0, \omega], h_{ab} \ne 0,$
 $q(t, x) \ge h_{ab}(t)$ for a.e. $t \in [0, \omega]$ and all $x \in [a, b],$

$$\left. \right\}$$

$$(N)$$

the assumptions $p \in \mathcal{V}^{-}(\omega)$ and $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$ in the above-stated results are necessary for the existence of a positive solution to problem (1_{1}) and a non-trivial non-negative solution to problem (1_{2}) , respectively.

Proposition 1₁. Let hypothesis (N) hold and problem (1₁) possess a positive solution. Then $p \in \mathcal{V}^{-}(\omega)$.

Proposition 1₂. Let hypothesis (N) hold and problem (1₂) possess a non-trivial non-negative solution. Then $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$.

It worth mentioning that some uniqueness type results for problem (1_i) can be also proved. However, we omit here their formulation instead of which we present consequences of the general results for the following particular case of (1_i) :

$$u'' = p(t)u + (-1)^{i}h(t)|u|^{\lambda}\operatorname{sgn} u; \quad u(0) = u(\omega), \quad u'(0) = u'(\omega),$$
(11_i)

where $p, h \in L([0, \omega])$ and $\lambda \in [0, 1[$. Observe that if u is a solution to problem (11_i) , then the function -u is its solution, as well.

Definition 3. We say that the function $p \in L([0, \omega])$ belongs to the set $\mathcal{D}_1(\omega)$ if for any $a \in [0, \omega[$, the solution u to the initial value problem

$$u'' = \widetilde{p}(t)u; \quad u(a) = 0, \ u'(a) = 1$$

has at most one zero in the interval $]a, a + \omega[$, where \tilde{p} is the ω -periodic extension of the function p to the whole real axis.

Remark 1. One can show that $\mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega) \cup \mathcal{V}^{+}(\omega) \subset \mathcal{D}_{1}(\omega)$.

Corollary 3₁. Let $\lambda \in]0,1[$ and

$$h(t) \ge 0 \text{ for a.e. } t \in [0, \omega], \ h \not\equiv 0.$$

$$(12)$$

Then the following assertions hold:

- (i) Problem (11₁) has a positive (resp. negative) solution if and only if $p \in \mathcal{V}^{-}(\omega)$.
- (ii) If $p \in \mathcal{V}^{-}(\omega)$, then problem (11₁) has exactly three sign-constant solutions (positive, negative, and trivial).

Corollary 3₂. Let $\lambda \in]0,1[$ and

$$h(t) > 0 \text{ for a.e. } t \in [0, \omega].$$
 (13)

Then the following assertions hold:

- (i) If $p \in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$, then problem (11₂) possesses only the trivial solution.
- (ii) If $p \in \mathcal{D}_1(\omega) \setminus [\mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega)]$, then problem (11₂) possesses at least three sign-constant solutions (non-trivial non-negative, non-trivial non-positive, and trivial) and no sign-changing solutions.
- (iii) If $p \notin \mathcal{D}_1(\omega)$, then problem (11₂) has at least three sign-constant solutions (non-trivial non-negative, non-trivial non-positive, and trivial).

In the next statement, assumption (13) appearing in Corollary 3_2 is relaxed to (12).

Corollary 4₂. Let $\lambda \in [0,1[$ and condition (12) be fulfilled. Then the following assertions hold:

- (i) If $p \in \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$, then problem (11₂) possesses only the trivial solution.
- (ii) If $p \in \mathcal{V}^+(\omega)$, then problem (11₂) has exactly three solutions (positive, negative, and trivial).
- (iii) If $p \in \mathcal{D}_1(\omega) \setminus [\mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \cup \mathcal{V}^+(\omega)]$, then problem (11₂) has no sign-changing solutions.

Acknowledgement

The research was supported by RVO:67985840.