On One Two-Dimensional Nonlinear Integro-Differential Equation

Zurab Kiguradze

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia E-mail: zkiqur@yahoo.com

As it is known the magnetic field diffusion process in the medium can be modeled by Maxwell's system of partial differential equations [1]. Assume that coefficients of thermal heat capacity and electroconductivity of the substance depend on temperature. In this case, as it is shown in [2], the system of Maxwell's equation can be reduced to the following integro-differential form

$$\frac{\partial H}{\partial t} = -\operatorname{rot}\left[a\left(\int_{0}^{t} |\operatorname{rot} H|^{2} d\tau\right) \operatorname{rot} H\right],\tag{1}$$

where $H = (H_1, H_2, H_3)$ is a vector of the magnetic field and function a = a(S) is defined for $S \in [0, \infty)$.

In the work [3] some generalization of equations of type (1) is proposed. In particular, if the temperature is kept constant throughout the material, the same process of penetration of a magnetic field into a substance can be rewritten in the following integro-differential form [3]:

$$\frac{\partial H}{\partial t} = a \bigg(\int_{0}^{t} \int_{\Omega} |\operatorname{rot} H|^2 \, dx \, d\tau \bigg) \Delta H, \tag{2}$$

where $x \in \Omega \subset \mathbb{R}^3$.

Note that integro-differential parabolic models of (1) and (2) type are complex and still yield to the investigation only for special cases (see, for example, [2], [4]–[17] and references therein). Investigations mainly are done for one-dimensional case, i.e., when components of magnetic field H depend on one space variable.

The existence of a weak solution to the first boundary value problem for the one component magnetic field and one dimensional spatial version for the case a(S) = 1 + S and uniqueness results for some general cases of model (1) were proved in [2]. The same questions for model (2) has been discussed in [8].

The theorems and discussions of a large time behavior to the solutions of the initial-boundary value problems for the one-dimensional analog of (2) type models for the different cases of function a = a(S) are studied in [4], [8]–[14], [16]. The multidimensional case for (1) type model is considered in [6]. The questions of numerical solution of corresponding initial-boundary value problems for (2) type models are discussed in [7], [12]–[17].

Purpose of this note is to study asymptotic behavior as $t \to \infty$ of a solution of the Dirichlet problem for model (2) in one component magnetic field and two-dimensional spatial case. Assume that the magnetic field has the following form H = (0, 0, U) and U = U(x, y, t). Then we have

$$\operatorname{rot} H = \left(\frac{\partial U}{\partial y}, -\frac{\partial U}{\partial x}, 0\right)$$

and equation (2) takes the following form

$$\frac{\partial U}{\partial t} = a(S) \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \right), \quad (x,t) \in Q = \Omega \times (0,\infty), \tag{3}$$

where

$$S(t) = \int_{0}^{t} \int_{\Omega} \left[\left(\frac{\partial U}{\partial x} \right)^2 + \left(\frac{\partial U}{\partial y} \right)^2 \right] dx \, dy \, d\tau, \tag{4}$$

and $\Omega = (0, 1) \times (0, 1)$.

In the domain Q, let us consider the following initial-boundary value problem for equation (3), (4):

$$U(x, y, t) = 0, \quad (x, y) \in \partial\Omega, \quad t \ge 0, \tag{5}$$

$$U(x, y, 0) = U_0(x, y), \quad (x, y) \in \overline{\Omega}, \tag{6}$$

where $U_0 = U_0(x, y)$ is a given function.

Recall the L_2 -inner product and norm:

$$(u,v) = \int_{\Omega} u(x,y)v(x,y) \, dx \, dy, \quad ||u|| = (u,u)^{1/2}.$$

The following statements take place.

Theorem 1. If $a(S) = (1+S)^p$, p > 0; $U_0 \in H_0^1(\Omega)$, then for the solution of problem (3)–(6) the following estimate is true

$$\left\|\frac{\partial U}{\partial x}\right\|^2 + \left\|\frac{\partial U}{\partial y}\right\|^2 \le C \exp(-2t).$$

Here and below we use usual Sobolev spaces $H^k(\Omega)$ and $H^k_0(\Omega)$ and constant C which denotes various positive values independent of t.

Note that Theorem 1 gives exponential stabilization of the solution of problem (3)–(6) in the norm of the space $H^1(\Omega)$.

Theorem 2. If $a(S) = (1 + S)^p$, p > 0; $U_0 \in H_0^1(\Omega) \cap H^2(\Omega)$, then for the solution of problem (3)–(6) the following estimate is true

$$\left\|\frac{\partial U(x,t)}{\partial t}\right\| \le C \exp\left(-\frac{t}{2}\right).$$

The algorithm of an approximate solution is constructed by using of which numerous numerical experiments for problem (3)–(6) with different kind of initial-boundary value problems are carried out. Results of numerical experiments agree with the theoretical ones obtained in Theorems 1 and 2.

Acknowledgement

The author thanks Shota Rustaveli National Scientific Foundation and France National Center for Scientific Research (grant No. CNRS/SRNSF 2013, 04/26) for the financial support.

References

- L. D. Landau and E. M. Lifshic, Electrodynamics of continuous media. (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1957.
- [2] D. G. Gordeziani, T. A. Dzhangveladze, and T. K. Korshiya, Existence and uniqueness of the solution of a class of nonlinear parabolic problems. (Russian) *Differentsial'nye Uravneniya* 19 (1983), No. 7, 1197–1207; translation in *Differ. Equations* 19 (1984), 887–895.

- [3] G. I. Laptev, Quasilinear evolution partial differential equations with operator coefficients. (Russian) Doctoral Dissertation, Moscow, 1990.
- [4] M. M. Aptsiauri, T. A. Jangveladze, and Z. V. Kiguradze, Asymptotic behavior of the solution of a system of nonlinear integro-differential equations. (Russian) *Differ. Uravn.* 48 (2012), No. 1, 70–78; translation in *Differ. Equ.* 48 (2012), No. 1, 72–80.
- [5] F. Chen, Crank-Nicolson fully discrete H¹-Galerkin mixed finite element approximation of one nonlinear integrodifferential model. Abstr. Appl. Anal. 2014, Art. ID 534902, 8 pp; http://dx.doi.org/10.1155/2014/534902.
- [6] T. A. Dzhangveladze, A nonlinear integro-differential equation of parabolic type. (Russian) Differentsial'nye Uravneniya 21 (1985), No. 1, 41–46, 180; translation in Differ. Equations, 21 (1985), 32–36.
- T. Jangveladze, Convergence of a difference scheme for a nonlinear integro-differential equation. Proc. I. Vekua Inst. Appl. Math. 48 (1998), 38–43.
- [8] T. Jangveladze, On one class of nonlinear integro-differential parabolic equations. Semin. I. Vekua Inst. Appl. Math. Rep. 23 (1997), 51–87.
- [9] T. Jangveladze and Z. Kiguradze, Estimates of a stabilization rate as $t \to \infty$ of solutions of a nonlinear integro-differential equation. *Georgian Math. J.* 9 (2002), No. 1, 57–70.
- [10] T. Jangveladze and Z. Kiguradze, Large time behavior of the solution to an initial-boundary value problem with mixed boundary conditions for a nonlinear integro-differential equation. *Cent. Eur. J. Math.* 9 (2011), No. 4, 866–873.
- [11] T. Jangveladze and Z. Kiguradze, Large time behavior of solutions to one nonlinear integrodifferential equation. *Georgian Math. J.* 15 (2008), No. 3, 531–539.
- [12] T. Jangveladze, Z. Kiguradze, and B. Neta, Large time asymptotic and numerical solution of a nonlinear diffusion model with memory. *Comput. Math. Appl.* **59** (2010), No. 1, 254–273.
- [13] T. Jangveladze, Z. Kiguradze, and B. Neta, Large time behavior of solutions and finite difference scheme to a nonlinear integro-differential equation. Comput. Math. Appl. 57 (2009), No. 5, 799–811.
- [14] T. Jangveladze, Z. Kiguradze, and B. Neta, Numerical solutions of three classes of nonlinear parabolic integro-differential equations. *Elsevier Science Publishing Co Inc.*, 2016.
- [15] T. Jangveladze, Z. Kiguradze, B. Neta, and S. Reich, Finite element approximations of a nonlinear diffusion model with memory. *Numer. Algorithms* 64 (2013), No. 1, 127–155.
- [16] Z. Kiguradze, Investigation and numerical solution of some systems of partial integrodifferential equations. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations – QUALITDE-2014, Tbilisi, Georgia, December 18-20, 2014, pp. 81–85; http://www.rmi.ge/eng/QUALITDE-2014/workshop_2014.htm.
- [17] N. Sharma and K. K. Sharma, Unconditionally stable numerical method for a nonlinear partial integro-differential equation. *Comput. Math. Appl.* 67 (2014), No. 1, 62–76.