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In the infinite interval R+ = [0,+∞[ , we consider the (n ≥ 2)-th order differential equation

u(n)(t) = f
(
t, u(t), . . . , u(n−1)(t), u(τ1(t)), . . . , u

(n−1)(τn(t))
)

(1)

with the boundary conditions

u(i−1)(0) = φi

(
u(n−1)(0)

)
(i = 1, . . . , n− 1), lim inf

t→+∞
|u(n−1)(t)| < +∞, (2)

where f : R+ × R2n → R, φi : R → R (i = 1, . . . , n − 1) and τk : R+ → R+ (k = 1, . . . , n) are
continuous functions and

0 ≤ τk(t) < t for t > 0, lim
t→+∞

τk(t) = +∞ (k = 1, . . . , n). (3)

Problems of the type (1), (2) arise in the oscillation theory when studying the existence of proper
oscillatory solutions of differential and functional differential equations having the property B (see,
e.g., [1–3]).

We have found conditions guaranteeing, respectively, the solvability and unique solvability of
problem (1), (2). In particular, the following theorems are proved.

Theorem 1. Let there exist a continuous function g : R+ × Rn → R+ and a positive constant ρ
such that∣∣f(t, x1, . . . , xn, y1, . . . , yn)∣∣ ≤

≤ g(t, y1, . . . , yn)
(
1 +

n∑
k=1

|xk|
)

for t ∈ R+, (x1, . . . , xn, y1, . . . , yn) ∈ R2n, (4)

f(t, x1, . . . , xn, y1, . . . , yn)x1 ≥ 0 for t ∈ R+, xk sgn(x1) ≥ ρ, yk sgn(y1) ≥ ρ (k = 1, . . . , n) (5)

and
lim inf
|x|→+∞

φi(x) sgn(x) > ρ (i = 1, . . . , n− 1). (6)

Then problem (1), (2) has at least one solution.

Theorem 2. Let the function f be nondecreasing and locally Lipschitz in the last 2n arguments
and along with (4), (5) satisfy the condition

+∞∫
0

∣∣f(t, tn−1x, . . . , x, τn−1(t)x, . . . , x)
∣∣ dt = +∞ for x ̸= 0.

If, moreover, φi (i = 1, . . . , n) are nondecreasing functions satisfying inequalities (6), then problem
(1), (2) has one and only one solution.
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As examples, we consider the differential equations

u(n)(t) =

n∑
k=1

pk(t)
∣∣u(k−1)(τk(t))

∣∣λku(k−1)(t) + q(t), (7)

u(n)(t) =

n∑
k=1

p1k(t)
∣∣u(k−1)(τk(t))

∣∣λ1k sgn
(
u(k−1)(τk(t))

)
+

+
n∑

k=1

p2k(t)
(
1 + |u(k−1)(t)|

)−λ2ku(k−1)(t) + q(t) (8)

with the boundary conditions

u(i−1)(0) = αi|u(n−1)(0)|µi sgn
(
u(n−1)(0)

)
+ βi (i = 1, . . . , n− 1), lim inf

t→+∞
|u(n−1)(t)| < +∞, (9)

where

λk > 0, λ1k ≥ 1, 0 ≤ λ2k ≤ 1 (k = 1, . . . , n),

αi > 0, µi > 0, βi ∈ R (i = 1, . . . , n),

pk : R+ → R+, pik : R+ → R+ (i = 1, 2; k = 1, . . . , n), q : R+ → R are continuous functions, while
τk : R+ → R+ (k = 1, . . . , n) are functions satisfying conditions (3).

Theorems 1 and 2 imply the following proposition.

Corollary 1. If

|q(t)| ≤ r

m∑
k=1

pk(t) for t ∈ R+,

where r = const > 0, then problem (7), (9) has at least one solution.

Corollary 2. If

|q(t)| ≤ r
n∑

k=1

(
p1k(t) + p2k(t)

)
for t ∈ R+

and
+∞∫
0

n∑
k=1

(
p1k(t)τ

(n−k)λ1k(t) + p2k(t)t
(1−λ2k)(n−k)

)
dt = +∞,

+∞∫
0

|q(t)| dt < +∞,

then problem (8), (9) has one and only one solution.
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