On One Boundary Value Problem for Semilinear Equation with the Iterated Multidimensional Wave Operator in the Principal Part

Sergo Kharibegashvili

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia E-mail: khar@rmi.ge

In the Euclidian space \mathbb{R}^{n+1} of the variables x_1, \ldots, x_n , t we consider the semilinear equation of the type

$$L_{\lambda}u := \Box^2 u + \lambda |u|^{\alpha} \operatorname{sgn} u = F, \tag{1}$$

where $\lambda \neq 0$ and $\alpha > 0$ are given real numbers, F is a given and u is an unknown real functions,

$$\Box := \frac{\partial^2}{\partial t^2} - \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}, \ n \ge 2.$$

For the equation (1) we consider the boundary value problem: find in the cylindrical domain $D_T = \Omega \times (0,T)$, where Ω is an open Lipschitz domain in \mathbb{R}^n , a solution $u(x_1,\ldots,x_n,t)$ of that equation according to the boundary conditions

$$u\Big|_{\partial D_T} = 0, \quad \frac{\partial u}{\partial \nu}\Big|_{\partial D_T} = 0,$$
 (2)

where $\nu = (\nu_1, \ldots, \nu_n, \nu_{n+1})$ is the unit vector of the outer normal to ∂D_T .

Let

$$\overset{\circ}{C}{}^{k}(D_{T},\partial D_{T}) := \left\{ u \in C^{k}(\overline{D}_{T}) : \left. u \right|_{\partial D_{T}} = \frac{\partial u}{\partial \nu} \right|_{\partial D_{T}} = 0 \right\}, \quad k \ge 2.$$

Introduce the Hilbert space $\overset{\circ}{W}_{2,\Box}^1(D_T)$ as the completion with respect to the norm

$$\|u\|_{\dot{W}_{2,\Box}^{1}(D_{T})}^{2} = \int_{D_{T}} \left[u^{2} + \left(\frac{\partial u}{\partial t}\right)^{2} + \sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_{i}}\right)^{2} + (\Box u)^{2} \right] dx dt$$

of the classical space $\overset{\circ}{C}^2(\overline{D}_T, \partial D_T)$.

Definition. Let $\alpha < \frac{n+1}{n-1}$ and $F \in L_2(D_T)$. The function $u \in \overset{\circ}{W}{}^1_{2,\square}(D_T)$ is said to be a weak generalized solution of the problem (1), (2) if the integral equality

$$\int_{D_T} \Box u \Box \varphi \, dx \, dt + \lambda \int_{D_T} |u|^{\alpha} \operatorname{sgn} u\varphi \, dx \, dt = \int_{D_T} F\varphi \, dx \, dt$$

is valid for any $\varphi \in \overset{\circ}{W}{}^{1}_{2,\Box}(D_T)$.

It is not difficult to verify that if a weak generalized solution u of the problem (1), (2) belongs to the class $\overset{\circ}{C}{}^4(D_T, \partial D_T)$, then it will also be a classical solution of that problem.

Theorem. Let $\lambda > 0$, $\alpha < \frac{n+1}{n-1}$. Then for any $F \in L_2(D_T)$ the problem (1), (2) has a unique weak generalized solution in the space $\overset{\circ}{W}_{2,\Box}^1(D_T)$.

Acknowledgement

The work was supported by the Shota Rustaveli National Science Foundation, Grant No. FR/86/5-109/14, 31/32.