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Stability of Linear Stochastic Difference Equations with Delay
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Stochastic difference equations were truly introduced in [3]. Stability of these equations is an
important problem which has not been comprehensively studied yet. Some results can be found
in [2,4,9–12]. Stochastic functional difference equations were introduced in [8] and studied further
in [13]. Stability of difference equations with a random delay was studied in [6].

Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis satisfying usual assumptions (see e.g. [7]). In what
follows we assume that Bi, i = 2, . . . ,m are independent standard scalar Wiener processes; E is
the expectation with respect to the probability measure P ; | · | is a fixed norm in Rn; ∥ · ∥ is the
norm of an n × n-matrix, which is consistent with the chosen vector norm in Rn; N is the set of
all natural numbers; N+ = {0} ∪N ; Z is the set of all integers.

For given 1 ≤ p < ∞, h > 0 the number chp is the universal constant for which the following
inequalities are satisfied

E

∣∣∣∣
t+h∫
t

φ(s) dB(s)
∣∣∣∣2p ≤ chpE

t+h∫
t

|φ(s)|2p ds. (1)

The inequalities should be valid for any t ≥ 0, any Ft-adapted stochastic process φ and a standard
scalar Wiener process B. In [7, p. 39], these constants are defined (up to a change of the notation)
as chp = pp(2p−1)php−1 for p > 1 and c1 = 1 for p = 1. The Burkholder–Davis–Ghandy inequalities
give the estimates which are independent of h (see e.g. [7, p. 40] where p should be replaced with 2p).

Below we consider the following stochastic difference equations:

(a) The linear ordinary difference Itô equation

x(s+ 1) = x(s) +A1(s)x(s)h+

m∑
i=2

Ai(s)x(j)
(
Bi((s+ 1)h)− Bi(sh)

)
(s ∈ N+), (2)

where x(s) is a Fs-measurable, n-dimensional random variable for any s ∈ N+, h is a positive
number, Ai(s) is an n× n-matrix, whose entries are Fs-measurable random variables for any
i = 1, . . . ,m, s ∈ N+.

(b) The linear difference Itô equation with delay

x(s+ 1) = x(s) +

s∑
j=−∞

A2
1(s, j)x(j)h+

+

m∑
i=2

s∑
j=−∞

A2
i (s, j)x(j)

(
Bi((s+ 1)h)− Bi(sh)

)
(s ∈ N+),

x(j) = φ(j) (j < 0),

(3)
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where x(s) is a Fs-measurable, n-dimensional random variable for any s ∈ N+, h is a positive
number, A2

i (s, j) is an n × n-matrix, whose entries are Fs-measurable random variables for
any s ∈ N+, j = −∞, . . . , s, i = 1, . . . ,m, φ(j) (j < 0) is a F0-measurable random variable.

Note that the equation (2) is a particular case of the equation (3). Below we therefore formulate
the definitions and results in terms of (3), only.

A solution of the equation (3) is a sequence of n-dimensional and Fs-measurable random vari-
ables x(s) (s ∈ Z), which satisfies (3) P -almost everywhere. More precisely, x(s) satisfies the
difference equation for s ∈ N+ and coincides with φ(s) for s < 0. Thus the only degree of freedom
of the solution of (3) is its initial value x(0) = x0 at s = 0.

Note that for any F0-measurable initial value x0, the solution of (3) always exists, and it is
unique up to the natural P -equivalence. Moreover, this solution is a Fs-adapted discrete stochastic
process x : Z × Ω → Rn. Restricted to the set N+, this solution will be denoted by xφ(s, x0),
s ∈ N+.

Definition 1. The trivial solution of the equation (3) is called p-stable with respect to the initial
data (φ and x0) if for any ε > 0 there exists η(ε) > 0 such that E|x0|p + vrai sup

j<0
E|φ(j)|p) < η

implies E|x(s, x0)|p ≤ ε for all s ∈ N+.
If, in addition, E|xφ(s, x0)|p → 0 as s → ∞, then the trivial solution is called asymptotically

p-stable.

The first result concerns asymptotic stability of the ordinary difference equation (2).

Theorem 1. Assume that Ai(s) = ai, i = 1, . . . ,m for s ∈ N+.
If now

−1 < a1h < 0, chp

m∑
i=2

|ai| < −a1h
1/2,

then the equation (2) is asymptotically 2p-stable with respect to initial data.

The second result applies to the vector equation (3). However, it does not guarantee asymptotic
stability.

Theorem 2. Assume that there exist positive numbers ai(s, j), i = 1, . . . , n, s ∈ N+, j = −∞, . . . , s
such that the coefficients in (3) satisfy

∥Ai(s, j)∥ ≤ ai(s, j), i = 1, . . . ,m, s ∈ N+, j = −∞, . . . , s

P -almost everywhere,
∞∑
τ=0

−1∑
j=−∞

ai(τ, j) < ∞ (i = 1, . . . ,m)

and

c
def
=

∞∑
τ=0

( τ∑
j=0

a1(τ, j)h+ chp

m∑
i=2

τ∑
j=0

ai(τ, j)h
1/2

)
< 1.

Then the trivial solution of the equation (3) is 2p-stable with respect to the initial data.

The idea of the proofs.

The proofs of the theorems are based on Azbelev’s W -transform of the equations (2) and (3),
respectively (see e. g. [1]). The transform is designed in a special manner with the help of the so-
called “reference equation”. Usually, the latter is an equation which already possesses the desired
asymptotic properties, but which is simpler than the equation to be studied. The W -method
works if the integral operator, which results from the substitution of the solutions of the reference
equations into the given equation, is invertible.

Applying this idea, we first of all introduce two spaces of discrete stochastic processes:
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1) dn is the linear space of all possible solutions of the difference equation (3);

2) ln is the linear space of all sequences of m×n-matrices H(s)(s ∈ N+), with the entries being
Fs-measurable random variables.

We will also need the following operator equation constructed from the equation (3):

x(s+ 1) = x(s) + [(V x)(s) + f(s)]Z(s) (s ∈ N+), (4)

where

(V x)(s) =
( s∑

j=0

A1(s, j)x(j),

s∑
j=0

A2(s, j)x(j), . . . ,

s∑
j=0

Am(s, j)x(j)
)

(s ∈ N+),

f(s) =
(
f1(s), f2(s), . . . , fm(s)

)
(s ∈ N+),

Z(s) =
(
h,

(
B2((s+ 1)h)− B2(sh)

)
, . . . ,

(
Bm((s+ 1)h)− Bm(sh)

))
(s ∈ N+).

Here f ∈ ln. Let us note that the initial function φ(s) from (3) is in this representation included in
the equation (4) as a special case of f , see the formula (8) below and [1,5] for further details. This
trick gives us opportunity to study stability with respect to φ as a particular case of admissibility
of pairs of spaces (see Definition 2 below).

It is easy to see that V is a linear operator from dn to ln.
The crucial step in the W -transform is the choice of “a reference equation”, which has the same

shape as the equation to be studied, but already has the desired asymptotic properties

x(s+ 1) = x(s) +
[
(Qx)(s) + g(s)

]
Z(s) (s ∈ N+), (5)

where Q : dn → ln is a linear operator and g ∈ ln.
One usually assumes that for any admissible x0 there exists a unique (up to the P -equivalence)

solution x of the equation (5). In this case, the solution xg(s, x0) (s ∈ N+) of (5) satisfying
xg(0, x0) = x0 has the following canonical representation

xg(s, x0) = U(s)x0 + (Wg)(s) (s ∈ N+), (6)

where U(s) (s ∈ N+) is the fundamental matrix to (5) and W : ln → dn is a linear operator such
that (Wg)(0) = 0 and (Wg)(s) (s ∈ N+) is a solution of (5)).

We rewrite the equation (4) using the representation (6) for the reference equation (5) as follows

x(s+ 1) = x(s) +
[
(Qx)(s) + ((V −Q)x)(s) + f(s)

]
Z(s) (s ∈ N+)

or alternatively,

x(s+ 1) = x(s) + U(s)x0 + (W (V −Q)x)(s) + (Wf)(s) (s ∈ N+).

Introducing the notation W (V −Q) = Θ, we obtain the equation

((I −Θ)x)(s) = U(s)x0 + (Wf)(s) (s ∈ N+).

To study asymptotic properties of a stochastic difference equation we need a notion of admis-
sibility of a pair of spaces. In the sequel we will use the following spaces of random variables.

The space kn consists of all n-dimensional F0-measurable random variables and

knp =
{
α : α ∈ kn, ∥α∥kn

def
= (E|α|p)1/p < ∞

}
.

Given a sequence γ(s) (s ∈ N+) of positive real numbers, we define two more spaces of discrete
stochastic processes:

mγ
p =

{
x : x ∈ dn, ∥x∥mγ

p

def
= sup

s∈N+

(
E|γ(s)x(s)|p

)1/p
< ∞

}
(m1

p = mp);
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and
bγ =

{
f : f ∈ b, γf ∈ b

}
which is endowed with the induced norm ∥f∥bγ = ∥γf∥b, where b is a linear subspace of the space
ln equipped with some norm ∥ · ∥b.

Definition 2. We say that the pair (mγ
p , bγ) is admissible for the system (4) if there exists a number

c ∈ R1
+ such that for any x0 ∈ knp , f ∈ bγ we have that xf ( · , x0) ∈ mγ

p and∥∥xf ( · , x0)∥∥mγ
p
≤ c

(
∥x0∥knp + ∥f∥bγ

)
. (7)

Now we make assumptions on the space b. Letting

f =
( −1∑

j=−∞
A2

1( · , j)φ(j), . . . ,
−1∑

j=−∞
A2

m( · , j)φ(j)
)
, (8)

we assume that the coefficients of the system (3) satisfy the following condition:

- for any φ such that sup
j<0

E|φ(j)|p < ∞ the stochastic process (8) belongs to the linear subspace

b of the space ln, the norm in b satisfies the estimate

∥f∥b ≤ K sup
j<0

(
E|φ(j)|p

)1/p
for some positive constant K.

The proofs of the above theorems are based on the following lemmas.

Lemma 1. Let the pair (mγ
p , bγ) be admissible for the reference equation (5) and the operator Θ

act in the space mγ
p . If the operator (I − Θl) : m

γ
p → mγ

p is continuously invertible, then the pair
(mγ

p , bγ) is admissible for the system (4).

Lemma 2. If for the system (4) corresponding to the equation (3) the pair (mp, b) is admissible,
then the trivial solution of (3) is p-stable with respect to the initial data.

Lemma 3. If for the system (4) corresponding to the equation (3) the pair (mγ
p , bγ) is admissible

for some sequence of numbers γ(s) (s ∈ N+) satisfying γ(s) ≥ δ > 0 for all s ∈ N+ (δ > 0),
lim

s→+∞
γ(s) = +∞ , then the trivial solution of (3) is asymptotically p-stable with respect to the

initial data.

For the technical details of the proofs see the paper [5].
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