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The differential equation

y′′ = α0p(t)φ0(y) exp(R(| ln |y||))φ1(y
′), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ 1 (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[ (i = 0, 1), are
continuous functions, R : ]0,+∞[→ ]0,+∞[ is a continuously differentiable function, Yi ∈ {0,±∞},
∆Yi is either the interval [y0i , Yi[

2, or the interval ]Yi, y
0
i ], is considered.

We suppose also that R is a regularly varying function of index µ, every φi(z) is regularly
varying as z → Yi (z ∈ ∆Yi) of index σi and 0 < µ < 1, σ0 + σ1 ̸= 1.

We call the measurable function φ : ∆Y → ]0,+∞[ a regularly varying as z → Y of index σ if
for every λ > 0 we have

lim
z→Y
z∈∆Y

φ(λz)

φ(z)
= λσ.

Here Y ∈ {0,±∞}, ∆Y is some one-sided neighbourhood of Y . If σ = 0, such function is called
slowly varying.

It follows from the results of the monograph [1] that regularly varying functions have the next
properties.

M1: The function φ(z) is regularly varying of index σ as z → Y if and only if it admits the
representation

φ(z) = zσθ(z),

where θ(z) is a slowly varying function as z → Y .

M2: If the function L : ∆Y 0 → ]0,+∞[ is slowly varying as z → Y0, the function φ : ∆Y → ∆Y 0

is regularly varying as z → Y , then the function L(φ) : ∆Y → ]0,+∞[ is slowly varying as
z → Y .

M3: If the function φ : ∆Y → ]0,+∞[ satisfies the condition

lim
z→Y
z∈∆

zφ′(z)

φ(z)
= σ ∈ R,

then φ is regularly varying as z → Y of index σ.

We call the solution y of the equation (1) the Pω(Y0, Y1, λ0)-solution, where −∞ ≤ λ0 ≤ +∞,
if the following conditions take place

y(i) : [t, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t) y(t)
= λ0. (2)

1If ω > 0, we take a > 0.
2If Yi = +∞ (Yi = −∞), we take y0

i > 0 (y0
i < 0).
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All Pω(Y0, Y1, λ0)-solutions of the equation (1) were investigated in [2, 3] for λ0 ∈ R \ {0}.
The necessary and sufficient conditions for the existence and asymptotic representations of such
solutions as t ↑ ω were found. The cases λ0 ∈ {0,±∞} are singular in studying of Pω(Y0, Y1, λ0)-
solutions of (1). To investigate such solutions we must put additional conditions to the right side
of equation (1).

We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies the
condition S if for any continuous differentiable function L : ∆Yi → ]0;+∞[ such that

lim
z→Yi
z∈∆Yi

zL′(z)

L(z)
= 0,

the next condition takes place

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

By the statement M1 and definition of φ0 it is clear that φ0(z)|z|−σ0 is slowly varying function
as z → Y0 (z ∈ ∆Y0). The sufficiently important class of Pω(Y0, Y1,∞)-solutions of the equation (1)
was investigated only in cases, when R(z) ≡ 1 and the function φ0(z)|z|−σ0 satisfies the condition S.
Using (2) and statements M1–M3, it is easy to see that the first derivative of every Pω(Y0, Y1,∞)-
solution of the equation (1) is a slowly varying function as t ↑ ω. This is one of the most difficult
problems in studying such solutions. For equations of the type (1) that contain, for example,

functions like exp(
√

| ln |y||) or exp( m
√

| ln ∥y∥|), the asymptotic representations of Pω(Y0, Y1,∞)-
solutions were not established before. The aim of the work is to establish the necessary and sufficient
conditions for the existence and asymptotic representations as t ↑ ω of Pω(λ

0
n−1)-solutions of the

equation (1) in general case. Let us note that the function exp(R(| ln |z||)) does not satisfy the
condition S.

We need the following subsidiary notations

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,
θ0(z) = Ψ0(z)|z|−σ0 .

We put also

L(t) = p(t)|πω(t)|σ0+1θ0
(
|πω(t)| sign y00

)
,

I0(t) =

t∫
A0

ω

p(τ)|πω(τ)|σ0θ0
(
|πω(τ)| sign y00

)
dτ,

A0
ω =


a, if

ω∫
a

p(t)|πω(t)|σ0θ0
(
|πω(t)| sign y00

)
dt = +∞,

ω, if

ω∫
a

p(t)|πω(t)|σ0θ0
(
|πω(t)| sign y00

)
dt < +∞,

in case lim
t↑ω

|πω(τ)| sign y00 = Y0. Here we choose b ∈ [a, ω[ so that |πω(t)| sign y00 ∈ ∆Y0 as t ∈ [b, ω[ .

The following conclusions are valid for the equation (1).

Theorem 1. The following conditions are necessary for the existence of the Pω(Y0, Y1,±∞)-
solutions of the equation (1)

Y0 =

{
±∞, if ω = +∞,

0, if ω < +∞,
πω(t)y

0
0y

0
1 > 0 as t ∈ [a, ω[ . (3)
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If the function φ0(z)|z|σ0 satisfies the condition S and the statement

lim
t↑ω

R′(| ln |πω(t)||)I0(t)
πω(t)I ′0(t)

= 0 (4)

is true, then the conditions (3) and

α0y
0
1(1− σ0 − σ1)I0(t) > 0 as t ∈ [b, ω[ ,

lim
t↑ω

y01|I0(t)|
1

1−σ0−σ1 = Y1, lim
t↑ω

πω(t)I
′
0(t)

I0(t)
= 0

are necessary and sufficient for the existence of Pω(Y0, Y1,±∞)-solutions of the equation (1). For
any such solution the following asymptotic representations take place as t ↑ ω:

y′(t)|y′(t)|−σ0

φ1(y′(t)) exp(R(| ln |y(t)||))
= α0(1− σ0 − σ1)I0(t)[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)].

Theorem 2. Let the function φ0(z)|z|σ0 satisfy the condition S, but the statement (4) do not
fulfilled. If

lim
t↑ω

R′(| ln |πω(t)||)L(t)
πω(t)L′(t)

= ∞,

then the conditions (3) and

α0y
0
1(1− σ0 − σ1) ln |πω(t)| > 0 for t ∈ [a, ω[ ,

lim
t↑ω

y01 exp
( 1

1− σ0 − σ1
R(| ln |πω(t)||)

)
= Y1

are necessary and sufficient for the existence of Pω(Y0, Y1,±∞)-solutions of the equation (1). For
any such solution the following asymptotic representations take place as t ↑ ω:

|y′(t)|1−σ0

φ1(y′(t)) exp(R(| ln |y(t)||))
=

|1− σ0 − σ1|L(t)
R′(| ln |πω(t)||)

[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)].
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