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Let us consider the linear nth-order homogeneous differential equation (n ∈ N)

y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)ẏ + an(t)y = 0, t ∈ R+

def
= [0,+∞), (1)

with continuous coefficients ai( · ) : R+ → R, i = 1, n. Identifying equation (1) and its row of
coefficients a = a( · ) = (a1( · ), . . . , an( · )), we denote equation (1) also by a. For the set of all
nonzero solutions of equation (1) we use the notation S∗(a).

The following definitions were given by I. N. Sergeev [1], [2].

Definition 1. For an arbitrary solution y( · ) ∈ S∗(a) and a time t > 0 the expression ν(y, t) with
either ν = ν0 or ν = ν− or ν = ν+ is understood as follows.

(a) The number ν0(y, t) of zeros of the function y( · ) on the interval (0, t).

(b) The number ν−(y, t) of sign alternations of the functions y( · ) on the interval (0, t). (A point
τ > 0 is called a sign alternation point of the function y( · ) if in every sufficiently small
neighborhood of τ the function takes values of different signs).

(c) The total number ν+(y, t) of roots of the function y( · ) on the interval (0, t); here each root
of the function y( · ) is counted with regard of their multiplicity.

It is easy to see that ν0(y, t), ν−(y, t), and ν+(y, t) are finite integer numbers for every nonzero
solution y( · ) and t > 0.

Definition 2. The upper frequencies of zeros, signs, and roots of a solution y( · ) ∈ S∗(a) are
defined as

ν̂ 0[y]
def
= lim

t→+∞

π

t
ν 0(y( · ); t), ν̂ −[y]

def
= lim

t→+∞

π

t
ν −(y( · ); t), and ν̂ +[y]

def
= lim

t→+∞

π

t
ν +(y( · ); t),

respectively.

Definition 3. The upper frequency spectra ν̂ 0(S∗(a), ν̂
−(S∗(a), and ν̂ +(S∗(a) of zeros, signs, and

roots of equation (1) are defined as the sets of upper frequencies of zeros, signs, and roots of all
solutions belonging to S∗(a), respectively.

Generally speaking, upper frequencies (2) can be equal to +∞ for some solutions of equation (1)
with unbounded coefficients.

For symbols ν = ν0, ν−, and ν+, respectively, functions ν̂( · ) : Rn \ {0} → R+ are defined as

ν̂(α)
def
= ν̂[yα], where yα( · ) is a solution of equation (1) such that (yα(0), ẏα(0), . . . , y

(n−1)
α (0))T = α,

and R+
def
= [0,+∞] is a nonnegative semi-axis of the extended real number line R def

= R⊔{−∞,+∞}.
The functions ν̂ 0( · ), ν̂ −( · ), and ν̂ +( · ) are called functions of zeros, signs, and roots of equation (1),
respectively.

As it follows from Sturm’s theorem and was noted in [1], [2], the upper frequency spectra
consist of zero for an arbitrary first-order equation (1) and of the same nonnegative number for
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an arbitrary second-order equation (1). Let us present some results dedicated to the structure of
the upper frequency spectra of higher order equations. For arbitrary positive incommensurable
numbers ω2 > ω1 there exists [3] a fourth-order autonomous equation, whose upper frequency
spectra coincide with segment [ω1, ω2]. There exists [4] a third-order periodic equation whose
upper frequency spectra contain the same segment. In [5] a third-order equation was constructed
whose upper frequency spectra are equal to [0, 1] ∩ Q, where the symbol Q stands for the set of
rational numbers. Moreover in the paper [5] another one third-order equation was obtained whose
upper frequency spectra consist of ([0, 1] ∩ I) ∪ {0}, where by I we denote the set of irrational
numbers of the real number line R.

We naturally encounter the problem as to what the upper frequency spectra and the functions
of zeros, signs, and root are. In the report under the assumption that zero belongs to the upper
frequency spectra of equation (1) the complete description of the spectra are obtained. Here we
also give an improvable description of the functions ν̂ 0( · ), ν̂ −( · ), and ν̂ +( · ) in terms of Baire
classes.

To formulate the theorem of our report let us briefly give some necessary notations and defi-
nitions. Let M be an arbitrary set and N be some class of its subsets. It is said that a function
f( · ) : M → R belongs to the class (∗, N) if for every r ∈ R Lebesgue set [f( · ) > r] (i.e. a preimage
f−1([r,+∞]) of the segment [r,+∞]) belongs to the class N . In the report we consider mainly Borel
subsets of Rn \ {0} of orders zero, one, and two [6]. Closed and open sets are said to be Borel sets
of zero order. Borel sets of order one are sets of type Fσ or Gδ which are, respectively, countable
unions of closed sets and countable intersections of open sets. Borel sets of the second order are
set of type Fσδ (the countable intersections of Fσ-sets) or sets of type Gδσ (the countable unions of
Gδ-sets). Borel sets of an arbitrary finite order are defined in a similar manner by induction. A set
is said to be a Borel set of the exact order k if it is a Borel set of the kth order but it isn’t Borel
set of order k − 1.

A set A ⊂ R is called a Suslin set [7, p. 213], [8, p. 489] of the number line R if it is a continuous
image of irrational numbers I with the subspace topology. The class of Suslin sets contains the
class of Borel sets as a proper subclass, and at the same time it is a proper subclass of the class of
Lebesgue measurable sets. A set A ⊂ R is called a Suslin set of the extended real number line if it
can be represented as an union of a Suslin set of R and some subset (including the empty subset)
of two-element set {−∞,+∞}.

Theorem 1. The following inclusions ν̂ −( · ) ∈ (∗, Gδ) and ν̂ 0( · ), ν̂ +( · ) ∈ (∗, Fσδ) hold.

From Theorem 1 it follows that the function ν̂ −( · ) belongs to the second Baire class and
the functions ν̂ 0( · ), ν̂ +( · ) belong to the third Baire class. The following theorem is a simple
consequence of Theorem 1 and the definition of Suslin sets.

Theorem 2. The upper frequency spectra ν̂ 0(S∗(a)), ν̂
−(S∗(a)), and ν̂ +(S∗(a)) of zeros, signs,

and roots of equation (1) are Suslin sets of the nonnegative semi-axis R+.

Under the assumption that zero belongs to the upper frequency spectra the converse of Theorem
2 was obtained.

Theorem 3. For an arbitrary Suslin set A ⊂ R+ containing zero there exists a third-order differ-
ential equation (1) whose upper frequency spectra of zeros, signs, and roots are equal to A.

The following theorem shows that the assertion of Theorem 1 is improvable.

Theorem 4. There exist a number r > 0 and a third-order differential equation (1) such that
the Lebesgue set [ν̂ −( · ) > r] of its function of signs is a Baire set of the exact first order, also
there exists another third-order differential equation (1) such that the Lebesgue sets [ν̂ 0( · ) > r]
and [ν̂ +( · ) > r] of its functions of zeros and roots, respectively, are Baire sets of the exact second
order.
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