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Consider the second order nonlinear dynamic equations
222 4 p(t)z (0 (t)) = 0, (1)

where p € C(T,R), t € T is a time scale (i.e., a closed nonempty subset of R) with supT = oo,
o(t)=inf{s € T: s>t} and a # 1, @ > 0 is the quotient of odd positive integers. Equation (1)
is called superlinear if o > 1 and sublinear if 0 < o < 1. We call an equation oscillatory if all its
continuable solutios are oscillatory.

When T = R, the dynamic equation (1) is the second order nonlinear differential equation

2" (t) + p(t)z*(t) = 0. (2)
When T = Ny, the dynamic equation (1) is the second order nonlinear difference equation
A%z(n) + p(t)z*(n+1) = 0. (3)

When p(t) is nonnegative, stronger oscillation results exist for the nonlinear equation (2) when
a # 1, notably the following;:

Theorem 1 (Atkinson [2]). Let a > 1. Then (2) is oscillatory if and only if

[e.9]

/ tp(t) dt = oo. (4)

Theorem 2 (Belohorec [10]). Let 0 < a < 1. Then (2) is oscillatory if and only if

o0

/t"‘p(t) dt = oo. (5)

When p(t) is allowed to take on negative values, for a« > 1, Kiguradze [1] proved that (4) is
sufficient for the differential equation (2) to be oscillatory and for 0 < av < 1 Belohorec [11] proved
that (5) is a sufficient for the differential equation (2) to be oscillatory. These results have been
further extended by Kwong and Wong [12].

When p(n) is nonnegative, J. W. Hooker and W. T. Patula [5, Theorem 4.1], A. Mingarelli [6],
respectively proved that

Theorem 3. Let o > 1. Then (3) is oscillatory if and only if

o0

> (n+1)p(n) = 0. (6)

1
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Theorem 4. Let 0 < a < 1. Then (3) is oscillatory if and only if

o0

> (n+1)*p(n) = oo.

1

In this paper, when p(t) is allowed to take on negative values, we obtain the following results.

Theorem A. Let o > 1 and there exist a real number 3, 0 < 8 < 1 such that [(o(t))’p(t) At = co.
to

Then (1) is oscillatory.

Theorem B. Let 0<a <1 and there exist a real number 3, 0< 3<1 such that [(c(t))*’p(t) At= oco.
to

Then (1) is oscillatory.
From Theorem A and Theorem B, we can get the following corollaries.

Corollary 5. Let a > 1 and p(t) be allowed to take on negative values. Then (3) is oscillatory if

[e.9]

S (0 +)p(n) = <.

1

Corollary 6. Let0 < a < 1 and p(t) be allowed to take on negative values. Then (3) is oscillatory if

o0

Z(n + 1)%p(n) = oc.

1
Example 7. The superlinear difference equation
a N e(—=1)"
(n+ )b+ (n+1)P

for a > 0, 0 < b < 1, is oscillatory. In [3], this result is shown to be true only for 0 < b < 1 and
0<bc<a<c(l—0).

A%z(n) + [ z%(n+1)=0, a>1,

Example 8. The sublinear difference equation
1 b(—1)"
(n+ 1)c+1 (n_|_ 1)0

is oscillatory if 0 < ¢ < @, and is nonoscillatory if ¢ > « (using Theorem 2.1 in [7]).

A%z(n) + ]xa(n+1):0, 0<ac<l,

To prove Theorem A and Theorem B, we need the following Lemmas.

Lemma 9. Suppose that a« > 1 and x(t) > 0 fort € [T, 00)r. Then we have

p 2(s) . xm (T
T/xa(a(s))A S Tao1

1
e TN A dh A _
( a—1 ) N O/(-T(S)‘l—h,u(s)a}A(s))o‘ (s)
1
_ dh A
N 0/(hac(a(s)) + (1= h)a(s))” (5). (7)
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When 22 (s) > 0, that is z(o(s)) > z(s), from (7) we have

1
—atl(s) dh N )
(5= a1 - O/ g pgn sy G

When 22 (s) <0, that is 2(o(s)) < z(s), from (7) we also have

1
r7 T l(s) dh N z2(s)
e C<- O/ -’ © = e )
So from (8) and (9), we get that for s € [T, 00)T

($_a+1(s))A < T (10)

a—1

Integrating (10) from T to t, we get

! xA(S) ! oz+1 8 _ xfaJrl(T) xfaJrl(t) :BiO‘Jrl(T)
T/ 2500 (s)) As < T/ =1 As = - < . O

a—1 a—1 = a-1

Similarly, we have

Lemma 10. Suppose that 0 < o < 1 and z(t) > 0 fort € [T,00)r. Then we have

[ 25(s) #1-o(1)
/.Z‘O‘(S)ASZ_ l—a '’
T

8

and

[, _astom)

x(s)x*(o(s)) - 11—«
The complete proofs of Theorem A and Theorem B are in [8] and [9].
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