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1 Introduction

The demand for smaller and faster devices has encouraged technological advances resulting in the
ability to manipulate matter at nanoscales that have enabled the fabrication of nanoscale electrome-
chanical systems. With the advances in materials synthesis and device processing capabilities, the
importance of developing and understanding nanoscale engineering devices has dramatically in-
creased over the past decade. Computational Nanotechnology has become an indispensable tool
not only in predicting, but also in engineering the properties of multi-functional nano-structured
materials. The presence of nano-inclusions in these materials affects or disturbs their elastic field
at the local and the global scale and thus greatly influences their mechanical properties.

Let G ∈ R2 is a bounded piezoelectric domain with a set of inhomogeneities I = ∪Ik ∈ G
(holes, inclusions, nano–holes, nano–inclusions) subjected to time–harmonic load on the boundary
∂G. Note that heterogeneities are of macro size if their diameter is greater than 10−6m, while
heterogeneities are of nano–size if their diameter is less than 10−7m.

The aim is to find the field in every point of M = G\I, I and to evaluate stress concentration
around the inhomogeneities.

Using the methods of continuum mechanics the problem can be formulated in terms of boundary
value problem for a system of 2-nd order differential equations (see [1, Chapter 2])

cN44∆uN3 + eN15∆uN4 − ρNu3,tt = 0,

eN15∆uN3 − εN15∆uN4 = 0,
(1)

where x = (x1, x2), ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
is Laplace operator with respect to t, N = M for x ∈ M and

N = I for x ∈ I; uN3 is mechanical displacement, uN4 is electric potential, ρN is the mass density,
cN44 > 0 is the shear stiffness, eN15 ̸= 0 is the piezoelectric constant and εN11 > 0 is the dielectric
permittivity.

Assume that the interface between the nano-inclusion I and its surrounding matrix M is re-
garded as thin material surface S that possesses its own mechanical parameters cI44, e

I
15, ε

I
11.

We shall consider the case when I is a nano-hole and boundary conditions on S are

tMj =
∂σS

lj

∂l
on S, (2)
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where σS
lj is generalized stress [1], j = 3, 4, l is the tangential vector. Then we shall study boundary

value problem (BVP) (1) with boundary conditions (2).
There are no numerical results for dynamic behavior of bounded piezoelectric domain with

heterogeneities under anti-plane load. Validation is done in [1] for infinite piezoelectric plane with
a hole, in [2] for isotropic bounded domain with holes and inclusions and in [3] for piezoelectric
plane with nano-hole or nano-inclusion. In Section 2 we shall construct CNN model for the BVP
(1), (2). In section 3 we shall find travelling wave solutions of this model and we shall provide
validation.

2 Cellular Nonlinear Network (CNN) Model of the BVP

In [1] fundamental solutions of the BVP (1), (2) are found using the Fourier transform. Then using
the Gauss theorem and proceeding as in [1] from the BVP a system of integro-differential equations
(IDE) is obtained for the unknowns u3,4 on S. This system has the following general form

∂u

∂t
= D

∂2u

∂x2
− C1

∫
S

f(u(t, x)) dt, t ∈ [0, 1], (3)

where C1 is a constant depending on the ρM , cM44 > 0, eM15 ̸= 0 and εM11 > 0, D is diffusion coefficient.
Then the CNN model [4] for the IDE (3) can be written as

duij
dt

= DA1 ∗ uij − C1

∫
S

f(uij(t)) dt, 1 ≤ i ≤ n, j = 3, 4, (4)

where A1 is 1-dimensional discretized Laplacian template, ∗ is convolution operator.
We shall take the output of the IDE CNN model (4) as a piecewise linear function [4]:

y(uij) = auij + b
(
|uij − Vp| − |uij − Vv|

)
− b

(
|uij + Vp| − |uij + Vv|

)
= N(uij), j = 3, 4, (5)

where a > 0, b < 0 are constants, Vp, Vv(0 < Vp < Vv) are the peak and valley voltages of the CNN,
and as one can notice the output function is symmetric with respect to the origin. The graph of
the output function is given on Figure 1 below.

Figure 1. Graph of the output function (5) for the CNN model.
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3 Travelling Wave Solutions of IDE CNN Model

We shall study traveling wave solutions of IDE CNN model (4) of the form

ui = Φ(i− ct), (6)

for some continuous function Φ : R1 → R1 and some unknown real number c. Let us denote
s = i − ct. Let us substitute (6) in the IDE CNN model (4). Therefore Φ(s, c) and c satisfy the
equation of the form

−cΦ
′
(s, c) = Φ(s− 1, c)− 2Φ(s, c) + Φ(s+ 1, c)− C1

∫
S

f(Φ(s, c)) dt. (7)

Our aim in this note is to study traveling wave solution of the IDE CNN model (4). We consider
solution of equation (7). The following theorem about travelling wave solution of our IDE CNN
model holds.

Theorem 1. Let Φ(s, c) be a solution of (7) satisfying the following conditions

lim
s→−∞

Φ(s, c) = 0, lim
s→∞

Φ(s, c) = 1.

Then

(i) If c = c∗ < 0, Φ(s, c) is a stable travelling wave solution of IDE CNN model.

(ii) If c = c∗ > 2, Φ(s, c) is unstable travelling wave solution.

We shall skip the proof due to the lack of space.
Traveling wave solution for our IDE CNN model (4) is given on Figure 2. We use the following

parameter set for the numerical simulation.Material parameters of the matrix are for transversely
isotropic piezoelectric material PZT4 are: elastic stiffness: cM44 = 2.56 × 1010N/m2; piezoelectric
constant: eM15 = 12.7C/m2; dielectric constant: εM11 = 64.6 × 10−10C/V m; density: ρM = 7.5 ×
103 kg/m3.
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Figure 2. Traveling wave solution of IDE CNN model (4).

The characteristic that is of interest in nano-structures is normalized Stress Concentration Field
(SCF) (σ/σ0) and it is calculated by the following formula

σ = −σ13 sin(φ) + σ23 cos(φ), (8)
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where φ is the polar angle of the observed point, σji is the stress (2) near S. The applied load is
time harmonic uni-axial along vertical direction uniform mechanical traction with frequency ω and

amplitude σ0 = 400× 106N/m2 and electrical displacement with amplitude D0 = k
εM11
eM15

σ0.

The validation of our model is provided below on Figure 3 for the parameter sets given above.
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Figure 3. Validation – dynamic SCF at observed point.
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