On One Formula of Computation of Uniform Means of Piecewise Continuous Functions on the Semiaxis

A. V. Konyukh

Belarusian State Economic University, Minsk, Belarus E-mail: al3128@qmail.com

We denote by CP a class of piecewise continuous functions $a(\cdot):[0,+\infty)\to\mathbb{R}$, and by m(a;s,t) we denote an integral mean of a function $a(\cdot)\in CP$ on a segment [s,t], i.e. a quantity $m(a;s,t)\stackrel{\mathrm{def}}{=} (t-s)^{-1}\int_s^t a(\xi)d\xi$. We also denote by CPB a subclass of CP, consisting of bounded on the semiaxis functions.

In paper [1], in particular, some formulae for computation of lower $\underline{\underline{a}}$ and upper $\overline{\overline{a}}$ integral means of a function $a(\cdot) \in CP$, i.e. of quantities

$$\underline{\underline{a}} \stackrel{\text{def}}{=} \underbrace{\lim_{t-s \to +\infty}} m(a; s, t) \text{ and } \overline{\overline{a}} \stackrel{\text{def}}{=} \underbrace{\lim_{t-s \to +\infty}} m(a; s, t)$$
 (1)

are obtained. As well as a function $a(\cdot)$ belongs to CP, the values of \underline{a} and \overline{a} may be infinite $(-\infty \text{ or } +\infty)$. All these values are obviously finite for functions $a(\cdot) \in CPB$. The general result of the paper [1] concerning computation of the quantities (1) for a function $a(\cdot) \in CP$ is that in case of their finiteness the same formulae, known for functions $a(\cdot) \in CPB$ ([2, p. 117] and [3, p. 66]), are valid. The assumption of a finite value of the quantities (1) is significant [1].

In this paper, in addition to the formulae of [1], one more formula for computation of the quantities (1) for functions of the class CP, the validity of which for functions of the class CPB was established earlier in [4] and [5], is obtained.

The properties of the quantities (1) are important in connection with the study of the lower $\underline{\beta}[x]$ and upper $\overline{\beta}[x]$ Bohl exponents [6, . 171–172; 7] of nonzero solutions $x(\cdot)$ of the linear differential system

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^n, \quad t \geqslant 0, \tag{2}$$

which are defined by formulae:

$$\underline{\beta}[x] = \lim_{t \to s \to +\infty} \frac{1}{t - s} \ln \frac{\|x(t)\|}{\|x(s)\|} \text{ and } \overline{\beta}[x] = \lim_{t \to s \to +\infty} \frac{1}{t - s} \ln \frac{\|x(t)\|}{\|x(s)\|}, \tag{3}$$

and used in the Lyapunov exponent theory. In particular, choosing the function in (1) as $a(\tau) \equiv (\ln ||x(\tau)||)'$, we obtain the quantities (3).

Following [1], for the fuction $a(\cdot) \in CP$ we denote by T(a) a set of all two-dimensional sequences $((s_k, t_k))_{k \in \mathbb{N}}$ such that $t_k - s_k \to +\infty$ when $k \to +\infty$ and there exists $\lim_{k \to +\infty} m(a; s_k, t_k)$, and we denote by S(a) a subset of all sequences $((s_k, t_k))_{k \in \mathbb{N}}$ of T(a), for which the additional condition $s_k \to +\infty$ holds. By the definitions of the lower and the upper limits, the definitions (1) of the uniform integral means $a(\cdot)$ may be written as follows

$$\underline{\underline{a}} = \inf_{((s_k, t_k)) \in T(a)} \lim_{k \to +\infty} m(a; s_k, t_k) \text{ and } \overline{\overline{a}} = \sup_{((s_k, t_k)) \in T(a)} \lim_{k \to +\infty} m(a; s_k, t_k).$$
 (4)

It is, in particular, shown in [1], that the following equalities are valid

$$\underline{\underline{a}} = \inf_{((s_k, t_k)) \in S(a)} \lim_{k \to +\infty} m(a; s_k, t_k) \text{ and } \overline{\overline{a}} = \sup_{((s_k, t_k)) \in S(a)} \lim_{k \to +\infty} m(a; s_k, t_k).$$
 (5)

Definitions (5), in comparison with definitions (4), constrict the class of two-dimensional sequences, which could be taken for evaluation of the limit of integral averages. The class of such sequences may be even more essentially constricted [4, 5], as it is shown below.

We fix a sequence $\delta = (\delta_k)_{k \in \mathbb{N}}$ such that $\delta_{k+1} - \delta_k \to +\infty$ when $k \to +\infty$ (every such sequence δ we will hereinafter call the rapidly increasing). We denote $\Delta_i = [\delta_i, \delta_{i+1}], i \in \mathbb{N}$, and will write $s \approx t \pmod{\delta}$, or shorter $s \approx t$, if s and t belong for some i to the same segment Δ_i . It is shown in [4, 5], that for the function $a(\cdot) \in CPB$ (and this condition is essentially used in the proof) its lower and upper uniform integral means may be evaluated under the conditions $t - s \to +\infty$ and $s \approx t \pmod{\delta}$. This statement in the theorem stated below, is transferred to the class of functions CP. We denote by $S(a; \delta)$ for fixed rapidly increasing sequence δ and a function $a(\cdot) \in CP$ a subset of those sequences $((s_k, t_k))_{k \in \mathbb{N}}$ of S(a), for which the condition $s_k \approx t_k \pmod{delta}$ holds.

Theorem. For every function $a(\cdot) \in CP$ and every fixed rapidly increasing sequence δ the following equalities hold: if $\underline{a} > -\infty$, then

$$\underline{\underline{a}} = \underbrace{\lim_{t-s \to +\infty} m(a; s, t)}_{s \approx t \pmod{\delta}} m(a; s, t) = \inf_{((s_k, t_k)) \in S(a; \delta)} \lim_{k \to +\infty} m(a; s_k, t_k), \tag{6}$$

and if $\overline{\overline{a}} < +\infty$, then

$$\overline{\overline{a}} = \overline{\lim_{\substack{t-s \to +\infty \\ s \approx t \pmod{\delta}}}} m(a; s, t) = \sup_{((s_k, t_k)) \in S(a; \delta)} \lim_{k \to +\infty} m(a; s_k, t_k).$$
(7)

Let us emphasize the importance of restrictions $\underline{a} > -\infty$ and $\overline{a} < +\infty$ for the validity of the formulae (6) and (7), respectively. Indeed, for example, the equality (7) does not hold for the sequence $\delta = (\delta_k)_{k \in \mathbb{N}}$, where $\delta_k = k^2$, $k \in \mathbb{N}$, and the function $a(\cdot)$, given by the equalities: $a(t) = -k^2$ when $t \in [(2k-1)^2, (2k)^2 - 1)$, $a(t) = k^2$ when $t \in [(2k)^2 - 1, (2k)^2)$ and a(t) = 1 when $t \in [(2k)^2, (2k+1)^2)$, $k \in \mathbb{N}$.

In fact, for the so-defined function $a(\cdot)$ we have: $\overline{a} = +\infty$, since, as is easily seen,

$$m(a;(2k)^2 - 1,(2k+1)^2) = (k^2 + 4k + 1)/(4k+2) \to +\infty$$
 for $k \to +\infty$.

On the other hand, the integral mean $m(a; s_i, t_i) = 1$, if $s_i, t_i \in [\delta_{2k}, \delta_{2k+1}]$, $k \in \mathbb{N}$, and $m(a; s_i, t_i) \leq k^2 - k^2(t_i - s_i - 1) = -k^2(t_i - s_i - 2)$, if $s_i, t_i \in [\delta_{2k-1}, \delta_{2k}]$, $k \in \mathbb{N}$, and, therefore, in this case $m(a; s_i, t_i) \leq 0$ when $t_i - s_i \geq 2$. That is why for the sequence δ and the function $a(\cdot)$ holds the equality

$$\lim_{\substack{t-s\to+\infty\\s\approx t\pmod{\delta}}} m(a;s,t) = \sup_{(s_k,t_k)\in S(a;\delta)} \lim_{k\to+\infty} m(a;s_k,t_k) = 1,$$

i.e. the first equality in (7) does not holds.

References

- [1] E. A. Barabanov and E. B. Bekryaeva, Computation of uniform integral means and some similar characterics of piecewise continuous functions. (Russian) *Diff. Urav.* **50** (2014), No. 8, 1011–1024; translation in *Diff. Equ.* **50** (2014), No. 8, 1003–1017.
- [2] B. F. Bylov, R. È. Vinograd, D. M. Grobman, and V. V. Nemyckiĭ, Theory of Ljapunov exponents and its application to problems of stability. (Russian) *Izdat. "Nauka"*, *Moscow*, 1966.
- [3] N. A. Izobov, Introduction to the theory of Lyapunov exponents. (Russian) Minsk, 2006.
- [4] A. V. Konyukh, Uniform lower exponents for solutions of linear diagonal differential systems. (Russian) Vestnik Beloruss. Gos. Univ. Ser. I Fiz. Mat. Mekh. 1992, No. 1, 44–48, 78.

- 88
- [5] E. A. Barabanov and A. V. Konyukh, Uniform exponents of linear systems of differential equations. (Russian) *Differentsial'nye Uravneniya* **30** (1994), No. 10, 1665–1676, 1836; translation in *Differential Equations* **30** (1994), No. 10, 1536–1545 (1995).
- [6] Yu. L. Daletskii and M. G. Krein, Stability of solutions of differential equations in Banach space. (Russian) Nonlinear Analysis and its Applications Series. Izdat. "Nauka", Moscow, 1970.
- [7] E. A. Barabanov and A. V. Konyukh, General exponents of solutions of linear differential systems as functions of the initial vector. (Russian) *Uspekhi Mat. Nauk* **30** (1994), Vyp. 4(298), 94–95