(1994-2003 )

(1994-2003 ) - 58

(1994-2003 ) - 19

- 77

(1994-2003 )

1. C. H. Kou, W. R. Yan, and J. R. Yan, Oscillation and nonoscillation of a delay-differential equation. Bull. Austral. Math. Soc. 49 (1994), No. 1, 69-79.

[16]

2. V. A. Rabtsevich, Rapidly growing regular solutions to the generalized Emden-Fowler equation with advanced argument. Differential Equations 30 (1994), No. 3, 368-372.

[1]

3. S. R. Grace and B. S. Lalli, Oscillation criteria for forced neutral differential-equations Czechoslovak Math. J. 44 (1994), No. 4, 713-724.

[16]

4. S. R. Grace and B. S. Lalli, Oscillation criteria for damped functional-differential equations. Dynam. Stability Systems 9 (1994), No. 3, 215-222.

[16]

5. I. P. Stavroulakis, Oscillations of delay difference-equations. Comput. Math. Appl. 29 (1995), No. 7, 83-88.

[16]

6. A. Elbert and I. P. Stavroulakis, Oscillation and nonoscillation criteria for delay-differential equations. Proc. Amer. Math. Soc. 123 (1995), No. 5, 1503-1510.

[16]

7. B. T. Li, Oscillations of delay-differential equations with variable- coefficients. J. Math. Anal. Appl. 192 (1995), No. 1, 312-321.

[16]

8. M.G. Shmulyan, Oscillating solutions of a second-order linear delay differential equation. Differential Equations 31 (1995), No. 4, 577-584.

[15]

9. [Anon]. Seminar on Qualitative Theory of Differential Equations in Moscow University Abstracts. Differential Equations 31 (1995), No. 5, 847-862.

[1]

10. [Anon]. Seminar on the qualitative theory of differential equations in the Moscow University Abstracts. Differential Equations 31 (1995), No. 9, 1552-1567.

[1]

11. B. T. Li, Oscillation of first order delay differential equations. Proc. Amer. Math. Soc. 124 (1996), No. 12, 3729-3737.

[16]

12. N. Partsvania, On oscillation of solutions of second order systems of deviated differential equations. Georgian Math. J. 3 (1996), No. 6, 571-582.

[2, 9, 21, 25]

 13. A. Domoshnitsky and M. Drakhlin, Nonoscillation of first order impulse differential equations with delay. J. Math. Anal. Appl. 206 (1997), No. 1, 254-269.

[16]

14. K. Gopalsamy and X. Z. He, Oscillations and convergence in an almost periodic competition system. Acta Appl. Math. 46 (1997), No. 3, 247-266.

[16]

15. B. T. Li and Y. Kuang, Sharp conditions for oscillations in some nonlinear nonautonomous delay differential equations. Nonlinear Anal. 29 (1997), No. 11, 1265-1276.

[16]

16. I. P. Stavroulakis, Oscillations of functional differential equations. Mem. Differential Equations Math. Phys. 12 (1997), 196-203.

[16, 17, 33]

17. X. H. Tang and J. H. Shen, Oscillations of delay differential equations with variable coefficients. J. Math. Anal. Appl. 217 (1998), No. 1, 32-42.

[16]

18. D. Bainov and P. Simeonov, Positive solutions of a superlinear first-order differential equation with delay depending on the unknown function. J. Comput. Appl. Math. 88 (1998), No. 1, 95-101.

[14]

19. C. G. Philos and Y. G. Sficas, An oscillation criterion for first order linear delay differential equations. Canadian Math. Bull. 41 (1998), No. 2, 207-213.

[16]

20. P. J. Y. Wong and R. P. Agarwal, Oscillations and nonoscillations of half-linear difference equations generated by deviating arguments. Comput. Math. Appl. 36 (1998), No. 10-12, 11-26.

[1]

21. I. T. Kiguradze and I. P. Stavroulakis, The existence of proper oscillating solutions of advancing differential equations. Differential Equations 34 (1998), No. 6, 748-754.

[1, 2, 25, 30]

22. G. Giorgadze, On oscillatory properties of an n-th order system of linear differential equations with deviating arguments. Mem. Differential Equations Math. Phys. 13 (1998), 132-135.

[1, 2, 40]

23. J. Jaros and I. P. Stavroulaskis, Oscillation tests for delay equations. Rocky Mountain J. Math. 29 (1999), No. 1, 197-207.

[16, 17, 33]

24. S. R. Grace and G. G. Hamedani, On the oscillation of functional differential equations. Math. Nachr. 203 (1999), 111-123.

[16]

25. R. P. Agarwal and S. R. Grace, The oscillation of higher-order differential equations with deviating arguments. Comput. Math. Appl. 38 (1999), No. 3-4, 185-199.

[16]

26. J. Diblik, A criterion for existence of positive solutions of systems of retarded functional differential equations. Nonlinear Anal. 38 (1999), No. 3, 327-339.

[16]

27. R. P. Agarwal and S. R. Grace, Oscillation of certain functional differential equations.  Comput. Math. Appl. 38 (1999), No. 5-6, 143-153.

[16]

28. M. Kon, Y. G. Sficas, and I. P. Stavroulakis, Oscillation criteria for delay equations. Proc. Amer. Math. Soc. 128 (2000), No. 10, 2989-2997.

[16, 17, 33]

29. X. H. Tang and J. S. Yu, Oscillation of first order delay differential equations. J. Math. Anal. Appl. 248 (2000), No. 1, 247-259

[16]

30. J. H. Shen and I. P. Stavroulakis, Oscillatory and nonoscillatory delay equations with piecewise constant argument. J. Math. Anal. Appl. 248 (2000), No. 2, 385-401.

[33]

31. J. Diblik and N. Koksch, Positive solutions of the equation  in the critical case. J. Math. Anal. Appl. 250 (2000), No. 2, 635-659.

[16]

32. J. W. Luo, Oscillation for nonlinear delay differential equations with impulses.  J. Math. Anal. Appl. 250 (2000), No. 1, 290-298.

[16]

33. J. R. Yan and C. H. Kou, Oscillation of solutions of impulsive delay differential equations. J. Math. Anal. Appl. 254 (2001), No. 2, 358-370.

[16]

34. J. S. Yu and X. H. Tang, Comparison theorems in delay differential equations in a critical state and applications. J. London Math. Soc. 63 (2001), No. 2, 188-204.

[16]

35. R. P. Agarwal, S. R. Grace, and D. ORegan, Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Anal. Appl. 262 (2001), No. 2, 601-622.

[16]

36. E. Litsyn and I. P. Stavroulakis, On the oscillation of solutions of higher order Emden-Fowler state dependent advanced differential equations. Nonlinear Anal. 47 (2001), No. 6, 3877-3883.

[1, 2, 25, 30]

37. M. Cecchi, Z. Dola, and M. Marini, On decaying solutions for functional differential equations with p-Laplacian. Nonlinear Anal. 47 (2001), No. 7, 4387-4398.

[2, 40]

38. A. Domoshnitsky, Unboundedness of solutions and instability of differential equations of the second order with delayed argument. Differ. Integral Equ. 14 (2001), No. 5, 559-576.

[2]

39. T. Kiguradze and I. P. Stavroulakis, On existence of oscillatory solutions to higher order linear hyperbolic equations. Mem. Differential Equations Math. Phys. 22 (2001), 147-153.

[45]

40. I. Kiguradze, N. Partsvania, and I. P. Stavroulakis, On advanced functional differential equations with properties A and B. Mem. Differential Equations Math. Phys. 24 (2001), 146-150.

[1, 2, 25, 45]

41. J. R. Yan, Oscillation of nonlinear delay impulsive differential equations and inequalities. J. Math. Anal. Appl. 265 (2002), No. 2, 332-342.

[16]

42. J. H. Shen and I. P. Stavroulakis, Sharp conditions for nonoscillation of functional equations. Indian J. Pure Appl. Math. 33 (2002), No. 4, 543-554.

[16]

43. R. P. Agarwal and S. R. Grace, Oscillation criteria for second order half-linear differential equations with deviating arguments. Dynam. Contin. Discrete Impuls. Systems 9 (2002), No. 2, 217-224.

[16]

 44. Q. R. Wang, Oscillation criteria for even order nonlinear damped differential equations. Acta Math. Hungar. 95 (2002), No. 3, 169-178.

[2]

45. X. Y. Li and D. M. Zhu, Oscillation and nonoscillation of advanced differential equations with variable coefficients. J. Math. Anal. Appl. 269 (2002), No. 2, 462-488.

[16]

46. I. T. Kiguradze, N. L. Partsvaniya, and I. P. Stavroulakis, Oscillatory properties of higher-order advance functional-differential equations. Differential Equations 38 (2002), No. 8, 1095-1107.

[1, 2, 45]

47. I. Kiguradze, N. Partsvania, and I. P. Stavroulakis, On oscillatory solutions of nonlinear differential equations with advanced arguments. Mem. Differential Equations Math. Phys. 25 (2002), 156-158.

[1, 2]

48. Y. G. Sficas and I. P. Stavroulakis, Oscillation criteria for first-order delay equations. Bull.  London Math. Soc. 35 (2003), 239-246.

[16, 17, 33]

49. J. Mirzov, Nonoscillatory solutions of some differential systems. Mem. Differential Equations Math. Phys. 28 (2003), 89-107.

[1, 40]

50. R. P. Agarwal, S. R. Grace, and D. ORegan, The oscillation of certain higher-order functional differential equations. Math Comput. Modelling 37 (2003), No. 7-8, 705-728.

[16]