(1994-2003 )

(1994-2003 ) - 52

(1994-2003 ) - 0

- 52

(1994-2003 )

1. I. M. Khamitov, Poisson structure of the Liouville field-theory. J. Phys. A 27 (1994), No. 3, 955-976.

[3, 12]

2. M. Cadoni and S. Mignemi, Classical and semiclassical properties of extremal black-holes with dilaton and modulus fields. Nuclear Phys. B 427 (1994), No. 3, 669-696.

[2, 4]

3. I. M. Khamitov, Classical scattering in Liouville field-theory. J. Phys. A 27 (1994), No. 21, 7217-7233.

[2, 12]

4. J. L. Gervais and J. Schnittger, Continuous spins in 2D gravity: Сhiral vertex operators and local-fields. Nuclear Phys. B 431 (1994), No. 1-2, 273-312.

[4, 12]

5. S. V. Klimenko, I. N. Nikitin, and V. V. Talanov, Visualization of singularities on world sheets of relativistic strings. Program. Comput. Software 20 (1994), No. 4, 169-176.

[4]

6. E. Gozzi, A new look at the dirac quantization conditions. Phys. Lett. A 202 (1995), No. 5-6, 330-336.

[25]

7. I. M. Khamitov, Exact quantum S-matrix in the Liouville field-theory. J. Phys. A 28 (1995), No. 18, 5375-5384.

[5]

8. J. Schnittger, Quantum group structure and local fields in the algebraic approach to 2D gravity. Theoret. and Math. Phys. 104 (1995), No. 1, 892-920.

[4, 12]

9. P. M. Santini, Linear theories, hidden variables and integrable nonlinear equations. Phys. Lett. A 212 (1996), No. 1-2, 43-49.

[4, 12]

10. T. Flp, Reduced SL(2, R) WZNW quantum mechanics. J. Math. Phys. 37 (1996), No. 4, 1617-1631.

[26]

11. A. Saa, Canonical quantization of the relativistic particle in static spacetimes. Classical Quantum Gravity 13 (1996), No. 3, 553-557.

[26]

12. L. Hadasz and T. Rog, Nambu-Goto string with the Gauss-Bonnet term and point-like masses at the ends. Phys. Lett. B 388 (1996), No. 1, 77-81.

[2]

13. P. Wiegmann, Bethe Ansatz and classical Hirota equation. Internat. J. Modern Phys. B 11 (1997), No. 1-2, 75-89.

[12]

14. T. Flp, Relativistic quantum mechanics on the SL(2,R) space-time. J. Math. Phys. 38 (1997), No. 2, 611-621.

[26]

15. B. Bruhn, Factorization of complex canonical transformations. J. Math. Phys. 38 (1997), No. 7, 3718-3734.

[25]

16. E. Gozzi, Can we look at the quantisation rules as constraints?. Nuclear Phys. B 57 (1997), 223-226.

[25]

17. I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, Quantum integrable models and discrete classical Hirota equations. Comm. Math. Phys. 188 (1997), No. 2, 267-304.

[12]

18. A. V. Yurov, On the localized solutions of the Davy-Stewartson-I equations. Theoret. and Math. Phys. 112 (1997), No. 3, 1113-1116.

[5]

19. J. Balog, L. Feher, and L. Palla, Coadjoint orbits of the Virasoro algebra and the global Liouville equation. Internat. J. Modern Phys. A 13 (1998), No. 2, 315-362.

[4]

20. S. V. Klimenko and I. N. Nikitin, Singularities on world sheets of open relativistic strings. Theoret. and Math. Phys. 114 (1998), No. 3, 299-312.

[4]

21. A. V. Zabrodin, Hirota equation and Bethe ansatz. Theoret. and Math. Phys. 116 (1998), No. 1, 782-819.

[12]

22. L. Martina, O. K. Pashaev, and G. Soliani, Bright solitons as black holes. Phys. Rev. D 5808 (1998), No. 8, Art. No. 084025.

[2, 4]

23. S. Kichenassamy, WTC expansions and nonintegrable equations. Stud. Appl. Math. 102 (1999), No. 1, 1-26.

[4]

24. W. Piechocki, Topology of solutions to the Liouville equation. Rep. Math. Phys. 43 (1999), No. 1-2, 299-301.

[4]

25. L. A. Kalyakin, Perturbation of a singular solution to the Liouville equation. Theoret. And Math. Phys. 118 (1999), No. 3, 307-313.

[4]

26. J. Kumar, Conformal mechanics and the Virasoro algebra. J. High Energy Phys., 1999, Art. No. 006.

[36]

27. L. Hadasz, Casimir energy of the Nambu-Goto string with Gauss-Bonnet term and point-like masses at the ends. Acta Phys. Polon. B 30 (1999), No. 9, 2679-2686.

[2]

28. K. G. Zloshchastiev, Zero-brane approach to the study of particle-like solitons in classical and quantum Liouville field theory. J. Phys. G 25 (1999), No. 11, 2177-2187.

[2, 4]

29. K. Bragiel and W. Piechocki, Topology of the space of smooth solutions to the Liouville equation. J. Geom. Phys. 32 (2000), No. 3, 252-268.

[4]

30. S. V. Talalov, Geometric description of a relativistic string. Theoret. And Math. Phys. 123 (2000), No. 1, 446-450.

[4]

31. L. A. Kalyakin, Asymptotic decay of solutions of the Liouville equation under perturbations. Math. Notes 68 (2000), No. 1-2, 173-184.

[4]

32. M. S. Plyushchay, Monopole Chern-Simons term: charge-monopole system as a particle with spin. Nuclear Phys. B 589 (2000), No. 1-2, 413-439.

[29]

33. J. Kumar, Raiders of the lost AdS. J. High Energy Phys., 2000, No. 5, Art. No. 035.

[36]

34. S. K. Moayedi and F. Darabi, Families of exact solutions of a two-dimensional gravity model minimally coupled to electrodynamics. J. Math. Phys. 42 (2001), No. 3, 1229-1235.

[36]

35. L. D. Faddeev, R. M. Kashaev, and A. Y. Volkov, Strongly coupled quantum discrete Liouville theory, I: Algebraic approach and duality. Comm. Math. Phys. 219 (2001), No. 1, 199-219.

[12]

36. M. Nakamura and K. Kojima, Coherent states in constrained systems. Nuovo Cimento Soc. Ital. Fis. B (12) 116 (2001), No. 3, 287-298.

[29]

37. W. Piechocki, Singular spacetime and quantum probe. Phys. Lett. B 526 (2002), No. 1-2, 127-131.

[40]

38. A. V. Yurov, Discrete symmetry's chains and links between integrable equations. J. Math. Phys. 44 (2003), No. 3, 1183-1201.

[5]

39. W. Piechocki, Quantization and spacetime topology. Classical Quantum Gravity 20 (2003), No. 13, 2491-2507.

[31, 34, 35, 36, 40]

40. J. Lucietti, Canonical quantization of a massive particle on AdS(3). J. High Energy Phys., 2003.

[26]