(i)

  1. Galois theories (with F. Borceux). Cambridge Studies in Advanced Mathematics, 72. Cambridge University Press, Cambridge, 2001.

(ii)

  1. Galois theory in categories with imbeddings. (Russian) Works of Young Scientists at Tbilisi State University, Physics, Mathematics and Natural Science Series, 2 (Russian), pp. 9-16. Izdat. Tbilis. Univ., Tbilisi, 1974.

  2. Profinite extensions of rings and Harrisons isomorphism. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 78 (1975), No. 3, 529-532.

  3. Satellites in arbitrary categories. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 82 (1976), No. 3, 529-532.

  4. Satellites with respect to Galois extensions. (Russian) Collection of articles on algebra, 2. Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 62 (1979), 38-48.

  5. Description of a functor of finite Galois extensions for an arbitrary commutative ring. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 101 (1981), No. 1, 17-20.

  6. Cohomology of categorical objects and the Galois extension of commutative rings. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 102 (1981), No. 1, 17-20.

  7. Calculation of Kan extensions by means of injective objects, and functors in nonadditive categories. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 70 (1982), 42-51.

  8. The cohomology of a pair of monoids and homological algebra of inner modules. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 70 (1982), 56-68.

  9. Abelian extensions of commutative rings. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), No. 3, 477-480.

  10. Galois extensions of commutative rings by profinite families of groups. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 74 (1984), 39-51.

  11. Magids theorem in categories. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 114 (1984), No. 3, 497-500.

  12. Galois theory of separable polynomials over a commutative ring. (Russian) Studies in algebra, Tbilisi, 1984, 44-64.

  13. Abelian extensions (of invertible rank, with normal basis) of commutative rings with an infinite number of idempotents. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 77 (1985), 36-49.

  14. The fundamental theorem of Galois theory. (Russian) Mat. Sb. (N.S.) 136(178) (1988), No. 3, 361-376, 431;English transl.: Math. USSR-Sb. 64 (1989), No. 2, 359-374.

  15. Galois theory in categories: the new example of differential fields. Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988), 369-380, World Sci. Publishing, Teaneck, NJ, 1989.

  16. Pure Galois theory in categories. J. Algebra 132 (1990), No. 2, 270-286.

  17. Cohomology and extensions of internal modules. K-theory and homological algebra (Tbilisi, 1987-88), 157-168, Lecture Notes in Math., 1437, Springer, Berlin, 1990.

  18. What is a double central extension? Cahiers Topologie Gom. Diffrentielle Catg. 32 (1991), No. 3, 191-201.

  19. Precategories and Galois theory. Category theory (Como, 1990), 157-173, Lecture Notes in Math., 1488, Springer, Berlin, 1991.

  20. How algebraic is the change-of-base functor (with W. Tholen)? Category theory (Como, 1990), 174-186, Lecture Notes in Math., 1488, Springer, Berlin, 1991.

  21. A note on Barr-Diaconescu covering theory. Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 121-124, Contemp. Math., 131, Part 3, Amer. Math. Soc., Providence, RI, 1992.

  22. Galois theory in variable categories (with D. Schumacher and S. R. Dietmar). Appl. Categ. Structures 1 (1993), No. 1, 103-110.

  23. Galois theory and a general notion of central extension (with G. M. Kelly). J. Pure Appl. Algebra 97 (1994), No. 2, 135-161.

  24. Radicals of rings and pullbacks (with L. Mrki). J. Pure Appl. Algebra 97 (1994), No. 1, 29-36.

  25. Facets of descent, I (with W. Tholen). Appl. Categ. Structures 2 (1994), No. 3, 245-281.

  26. Modularity and descent (with A. Carboni). J. Pure Appl. Algebra 99 (1995), No. 3, 255-265.

  27. Decidable (= separable) objects and morphisms in lextensive categories (with A. Carboni). J. Pure Appl. Algebra 110 (1996), No. 3, 219-240.

  28. A note on the Galois correspondence for commutative rings (with A. Carboni and A. R. Magid). J. Algebra 183 (1996), No. 1, 266-272.

  29. Van Kampen theorems for categories of covering morphisms in lextensive categories (with R. Brown). J. Pure Appl. Algebra 119 (1997), No. 3, 255-263.

  30. On localization and stabilization for factorization systems (with A. Carboni, G. M. Kelly, and R. Par). Appl. Categ. Structures 5 (1997), No. 1, 1-58.

  31. The reflectiveness of covering morphisms in algebra and geometry (with G. M. Kelly). Theory Appl. Categ. 3 (1997), No. 6, 132-159.

  32. Internal categories and groupoids in congruence modular varieties (with M. C. Pedicchio). J. Algebra 193 (1997), No. 2, 552-570.

  33. Facets of descent, II (with W. Tholen). Appl. Categ. Structures 5 (1997), No. 3, 229-248.

  34. Protomodularity, descent, and semidirect products (with D. Bourn). Theory Appl. Categ. 4 (1998), No. 2, 37-46.

  35. Locally semisimple coverings (with L. Mrki and W. Tholen). J. Pure Appl. Algebra 128 (1998), No. 3, 281-289.

  36. Galois theory of second order covering maps of simplicial sets (with R. Brown). J. Pure Appl. Algebra 135 (1999), No. 1, 23-31.

  37. Galois theory in symmetric monoidal categories (with R. Street). J. Algebra 220 (1999), No. 1, 174-187.

  38. Functorial factorization, well-pointedness and separability (with W. Tholen). J. Pure Appl. Algebra 142 (1999), No. 2, 99-130.

  39. Extended Galois theory and dissonant morphisms (with W. Tholen). Special volume on the occasion of the 60th birthday of Professor Michael Barr (Montreal, QC, 1997). J. Pure Appl. Algebra 143 (1999), No. 1-3, 231-253.

  40. Central extensions in Maltsev varieties. Theory Appl. Categ. 7 (2000), No. 10, 219-226.

  41. Central extensions in universal algebra: a unification of three notions (with G. M. Kelly). Algebra Universalis 44 (2000), No. 1-2, 123-128.

  42. A note on actions of a monoidal category (with G. M. Kelly). CT2000 Conference (Como). Theory Appl. Categ. 9 (2001/02), 61-91.

  43. Pseudogroupoids and commutators (with M. C. Pedicchio). Theory Appl. Categ. 8 (2001), No. 15, 408-456.

  44. Boolean Galois theories (with A. Carboni). Dedicated to Professor Hvedri Inassaridze on the occasion of his 70th birthday. Georgian Math. J. 9 (2002), No. 4, 645-658.

  45. Semi-abelian categories (with L. Mrki and W. Tholen). Category theory 1999 (Coimbra). J. Pure Appl. Algebra 168 (2002), No. 2-3, 367-386.

  46. Finite preorders and topological descent (with M. Sobral). I. Special volume celebrating the 70th birthday of Professor Max Kelly. J. Pure Appl. Algebra 175 (2002), No. 1-3, 187-205.

  47. Finite preorders and topological descent (with M. Sobral). II. tale descent. J. Pure Appl. Algebra 174 (2002), No. 3, 303-309.

  48. Internal crossed modules. Georgian Math. J. 10 (2003), No. 1, 99-114.

  49. Characterization of protomodular varieties of universal algebras (with D. Bourn). Theory Appl, Categ. 11 (2003), No. 6, 143-147.

  50. Galois theory of simplicial complexes (with M. Grandis). Topology Appl. 132 (2003), No. 3, 281-289.

  51. Kurosh-Amitsur radicals via a weakened Galois connection (with L. Mrki). Comm. Algebra 31 (2003), No. 1, 251-268.

  52. Categorical Galois theory: revision and some recent developments. Galois Connections and Applications, Kluwer Academic Publishers B. V., 2003 (accepted).

  53. Beyond barr exactness: effective descent morphisms (with M. Sobral and W. Tholen). Categorical Foundations; Special Topics in Order, Topology, Algebra, and Sheaf Theory, Cambridge University Press, 2003 (accepted).

  54. Smash product of pointed objects in lextensive categories (with A. Carboni). J. Pure Appl. Algebra (accepted).

  55. Galois theory and a new homotopy double groupoid of a map of spaces (with R. Brown). Appl. Categ. Structures (accepted).