1. Representation of measurable functions of two variables by double series. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 34 (1964), 277-282.

  2. On universal double series. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 34 (1964), 525-528.

  3. The universal harmonic function in the space En. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 55 (1969), 41-44.

  4. The boundary behavior of functions defined in a ball. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 55 (1969), 281-284.

  5. A certain subclass of nowhere dense sets. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 60 (1970), 289-291.

  6. Certain boundary properties of functions that are harmonic in a ball. (Russian) Dokl. Akad. Nauk SSSR 198 (1971), 1005-1006.

  7. To the boundary behaviour of functions, harmonic in a sphere. Tezisy dokl. vsesoyuzn. conf. v TFKP. Kharkov, FTI AN Ukrain. SSR 4(1971), 29-30.

  8. Certain boundary properties of functions harmonic in a ball. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 42 (1972), 65-77.

  9. Geometric definition of functions of the Fedorov-Smirnov class. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 95 (1979), No. 2, 281-283.

  10. M. Riesz's LF-inequality for the Fedorov-Smirnov class of functions. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 95 (1979), No. 3, 545-548.

  11. The inequalities of M. Riesz, A. Kolmogorov and A. Zygmund for functions of the Fedorov-Smirnov class. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 65 (1980), 51-64.

  12. Plessner and Meier theorems for harmonic functions of the Fedorov-Smirnov class. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 65 (1980), 65-72.

  13. L2-approximation by Hartogs-Laurent and Hartogs-Fourier polynomials. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 65 (1980), 73-84.

  14. Some integral inequalities. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 69 (1982), 38-50.

  15. Holomorphy and membership of functions in the Fedorov-Smirnov class. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), No. 2, 257-259.

  16. Partial derivatives with boundary behavior and variation of the Poisson integral. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze  76 (1985), 18-39.

  17. Partial derivatives of the Poisson integral and their boundary properties. (Russian) Reports of the extended sessions of a seminar of the I. N. Vekua Institute of Applied Mathematics, Vol. I, No. 2 (Russian) (Tbilisi, 1985), 75-78, 181, Tbilis. Gos. Univ., Tbilisi, 1985.

  18. On the plane variation and gradient of a function harmonic in a ball. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 120 (1985), No. 3, 473-475.

  19. Formulas for a mixed derivative of the Poisson integral and its boundary conditions. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 120 (1985), No. 2, 241-244.

  20. Hartogs-Fourier series. (Russian) Theory of functions and approximations, Part 2 (Russian) (Saratov, 1984), 97-98, Saratov. Gos. Univ., Saratov, 1986.

  21. Representation of a pair of functions by derivatives of the Poisson integral. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 122 (1986), No. 1, 21-23.

  22. A mixed derivative of the Poisson integral. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze  86 (1987), 24-39.

  23. Boundary values of the derivatives of the Poisson integral, and the representation of functions. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 128 (1987), No. 2, 269-271.

  24. Convergence of a Hartogs-Fourier series. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 129 (1988), No. 2, 257-260.

  25. Summability of the differentiated Fourier-Laplace series. (Russian) Soobshch. Akad. Nauk Gruzii 140 (1990), No. 3, 489-492.

  26. Generalizations of Fatou and Luzin theorems for derivatives of the Poisson integral on a sphere. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 139 (1990), No. 1, 29-32.

  27. Angular limits at the poles of a sphere of the derivatives of the Poisson integral. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze  98 (1991), 99-111.

  28. Boundary values of the derivatives of the Poisson integral for a ball and the representation of functions of two variables. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze  98 (1991), 52-98.

  29. Angular limits of additional terms in the derivative of the Poisson spherical integral. Proc. A. Razmadze Math. Inst. 101 (1992), 27-37.

  30. On the mixed partial derivatives of Poisson integral. In: Integral operators and boundary properties of functions. Fourier series. Research reports of Razmadze Math. Inst., Tbilisi, Georgia. Nova Science Publishers, Inc. New York, 1992, 29-50.

  31. Differentiability of the indefinite double Lebesgue integral. (Russian) Soobshch. Akad. Nauk Gruzii 147 (1993), No. 1, 22-25.

  32. Boundary properties of second order derivatives of the Poisson spherical integral. Proc. A. Razmadze Math. Inst. 102 (1993), 9-27.

  33. Some criteria for the differentiability of functions of two variables. (Russian) Soobshch. Akad. Nauk Gruzii 148 (1993), No. 1, 9-12.

  34. On the differentiability of functions of two variables and of indefinite double integrals. Proc. A. Razmadze Math. Inst. 106 (1993), 7-48.

  35. Lebesgue points and segments for functions of two variables. (Russian) Soobshch. Akad. Nauk Gruzii 151 (1995), No. 3, 369-372.

  36. Total differential of the indefinite Lebesgue integral. Proc. A. Razmadze Math. Inst. 114 (1997), 27-34.

  37. Associated integrals, functions, series and radian derivative of the Poisson spherical integral. Proc. A. Razmadze Math. Inst. 114 (1997), 107-111.

  38. Allied integrals, functions and series for the unit sphere. Georgian Math. J. 5 (1998), No. 3, 213-232.

  39. For Fourier analysis on the sphere. Bull. Georgian Acad. Sci. 158 (1998), No. 3, 357-360.

  40. Separately continuous functions in new sense are continuous. Real Anal. Exchange 24 (1998/1999), No. 2, 695-702.

  41. A radial derivative with boundary values of the spherical Poisson integral. Georgian Math. J. 6 (1999), No. 1, 19-32.

  42. A necessary and sufficient condition for differentiability functions of several variables. Proc. A. Razmadze Math. Inst. 123 (2000), 23-29.

  43. On the limit and continuity of functions of several variables. Proc. A. Razmadze Math. Inst. 124 (2000), 23-29.

  44. The continuity and the limit in the wide. Their connection with the continuity and limit. Proc. A. Razmadze Math. Inst. 128 (2002), 37-46.

  45. Unilateral in various senses: the limit, continuity, partial derivative and the differential for functions of two variables. Proc. A. Razmadze Math. Inst. 129 (2002), 1-15.

  46. On one analogue of Lebesgue theorem on the differentiation of indefinite integral for functions of several variables (with G. Oniani). Proc. A. Razmadze Math. Inst. 132 (2003), 139-140.

  47. On one analogue of Lebesgue theorem on the differentiation of indefinite integral for functions of several variables (with G. Oniani). Proc. A. Razmadze Math. Inst. 133 (2003), 1-5.
  48. Relation between the continuity of a function gradient and the finiteness of its strong gradient. Proc. A. Razmadze Math. Inst. 134 (2003), 1-138.