(1994-2003 )

(1994-2003 ) - 24

(1994-2003 ) - 15

- 39

(1994-2003 )

1. T. Gegelia and L. Jentsch, Potential methods in continuum mechanics. Georgian Math. J. 1 (1994), No. 6, 599-640.

[5]

2. E. Shargorodsky, An Lp-analogue of the Vishik-Eskin theory. Mem. Differential Equations Math. Phys. 2 (1994), 41-146.

[5, 7, 8]

3. D. Natroshvili, Mathematical problems of the anisotropic elasticity for piecewise homogeneous bodies. Problems and methods in mathematical physics (Chemnitz, 1993), 100-110, Teubner-Texte Math., 134, Teubner, Stuttgart, 1994.

[5]

4. R. Duduchava, D. Natroshvili, and E. Shargorodsky, Basic boundary value problems of thermoelasticity for anisotropic bodies with cuts, I. Georgian Math. J. 2 (1995), No. 2, 123-140.

[5]

5. R. Duduchava, D. Natroshvili, and E. Shargorodsky, Basic boundary value problems of thermoelasticity for anisotropic bodies with cuts, II. Georgian Math. J. 2 (1995), No. 3, 259-276.

[5]

6. D. Natroshvili, Mixed interface problems for anisotropic elastic bodies. Georgian Math. J. 2 (1995), No. 6, 631-652.

[5]

7. L. Jentsch and D. Natroshvili, Non-classical mixed interface problems for anisotropic bodies. Math. Nachr. 179 (1996), 161-186.

[5, 7, 8]

8. V. Kirvalidze, The Dirichlet problem for Stokes equation in a domain exterior to an open surface. Math. Methods Appl. Sci. 20 (1997), No. 15, 1257-1269.

[5]

9. R. Duduchava and D. Natroshvili, Mixed crack type problem in anisotropic elasticity. Math. Nachr. 191 (1998), 83-107.

[5, 7, 16, 17]

10. L. Jentsch, D. Natroshvili, and L. W. Wendland, General transmission problems in the theory of elastic oscillations of anisotropic bodies (basic interface problems). J. Math. Anal. Appl. 220 (1998), No. 2, 397-433.

[5, 7]

11. G. Khuskivadze, V. Kokilashvili, and V. Paatashvili, Boundary value problems for analytic and harmonic functions in domains with nonsmooth boundaries. Applications to conformal mappings. Mem. Differential Equations Math. Phys. 14 (1998), 1-195.

[10]

 12. S. Nicaise, and A.-M. Sndig, Transmission problems for the Laplace and elasticity operators: regularity and boundary integral formulation. Math. Models Methods Appl. Sci. 9 (1999), No. 6, 855-898.

[7]

13. R. Duduchava, A.-M. Sndig, and W. L. Wendland, Interface cracks in anisotropic composites. Math. Methods Appl. Sci. 22 (1999), No. 16, 1413-1446.

[5, 7, 9]

14. L. Jentsch and D. Natroshvili, Three-dimensional mathematical problems of thermoelasticity of anisotropic bodies. I. Mem. Differential Equations Math. Phys. 17 (1999), 7-126.

[5, 7]

15. L. Jentsch and D. Natroshvili, Three-dimensional mathematical problems of thermoelasticity of anisotropic bodies. II. Mem. Differential Equations Math. Phys. 18 (1999), 1-50.

[5, 7]

16. R. Duduchava and F.-O. Speck, Singular integral equations in special weighted spaces. Georgian Math. J. 7 (2000), No. 4, 633-642.

[17]

17. R. Duduchava, The Green formula and layer potentials. Integral Equations Operator Theory 41 (2001), No. 2, 127-178.

[16, 17]

18. A. Gachechiladze and D. Natroshvili, Boundary variational inequality approach in the anisotropic elasticity for the Signorini problem. Georgian Math. J. 8 (2001), No. 3, 469-492.

[5]

19. D. Kapanadze, Pseudo-differential equations in anisotropic weighted Bessel potential spaces with asymptotics. Mem. Differential Equations Math. Phys. 25 (2002), 121-149.

[17]

20. D. Kapanadze and W. Schulze, Crack theory and edge singularities. Kluwer Acad. Publ., Dordrecht 561 (2003).

[11, 16, 17]

21. D. Natroshvili and W. Wendland, Boundary variational inequalities in the theory of interface crack problems. Integral Equations Operator Theory 47 (2003), No. 4, 375-500.

[5]

22. M. Costabel, M. Dauge, and R. Duduchava, Asymptotics without logarithmic terms for crack problems. Comm. Partial Differential Equations 28 (2003), No. 5-6, 869-926.

[11, 16, 17]