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FUCHSIAN SYSTEMS ON RIEMANN SURFACES

Dedicated to the memory of Andrey Bolibruch

The fundamental work of A.Bolibruch gave a new impetus to the study
of Fuchsian systems [1]. In particular, A.Bolibruch invented some powerful
tools for investigation of the famous Riemann-Hilbert problem and global
properties of Fuchsian system in terms of associated holomorphic vector
bundles with meromorphic connections. This technique later was success-
fully applied for solving the Riemann-Hilbert problem for compact Riemann
surfaces of higher genus (see [2] and references therein). The results pre-
sented in the talk belong to the same direction.

Denote by Λ1
X(log S) the sheaf of 1-forms holomorphic over X \S, where

X is a compact Riemann surface and S is a finite subset. We consider
admissible pairs over (X, S) consisting of a holomorphic vector bundle E →
X and holomorphic connection ∇ : Λ0(E) → Λ0 ⊗ Λ1

X(log S). For such
pairs one can define the monodromy representation and splitting type [1].
A logarithmic connection (E,5) is called quasi-Fuchsian if there exists a
splitting of E such that −2g(j − 1) ≤ kj−1 − kj ≤ 2g, i = 1, . . . , n − 1.
If k1 = 0, then logarithmic connection (E,∇) is Fuchsian. The following
theorem explicates some previously known results of Fuchsian systems with
prescribed monodromy.

Theorem. 1) If the monodromy matrix ρ(γj) is diagonalisable for some
j, then for representation ρ there exists a Fuchsian system whose mon-
odromy representation coincides with ρ.

2) For any two dimensional representation ρ there exists a rank-two Fuch-
sian system whose monodromy representation coincides with ρ.

3) Let (E,∇) be a stable pair. Then there exists a semi-stable pair
(E′,∇′) such that deg(E′) = 0, ∇′ has the same singular points as ∇,
and the monodromy representations induced by the ∇ and ∇′ coincide.

We also present a similar result for holomorphic principal G-bundles
with holomorphic connection and G-system on Riemann surfaces where
G is a compact Lie group (see [3]). Such generalization of Fuchsian sys-
tems opens wide perspectives for studying certain differential equations of
modern mathematical physics, for example, the two-dimensional Yang–Mills
equations.
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