M. Mania^{*} and R. Tevzadze^{**}

*A. Razmadze Mathematical Institute, Georgian Academy of Sciences

Tbilisi, Georgia

**Institute of Cybernetics, Georgian Academy of Sciences Tbilisi, Georgia

AN EXPONENTIAL MARTINGALE EQUATION

Let (Ω, \mathcal{F}, P) be a probability space with continuous filtration $F = (F_t, t \in [0, T])$. Denote by \mathcal{M} a stable subspace of the space of square integrable martingales and let \mathcal{M}^{\perp} be its strongly orthogonal complement.

We consider the following exponential equation

$$\mathcal{E}_T(m)\mathcal{E}_T^{\alpha}(m^{\perp}) = c \exp\{\eta\},\tag{1}$$

where η is a given F_T -measurable random variable and α is a given real number. A solution of equation (1) is a triple (c, m, m^{\perp}) , where c is strictly positive constant, $m \in \mathcal{M}$ and $m^{\perp} \in \mathcal{M}^{\perp}$. Here $\mathcal{E}(X)$ is the Doleans–Dade exponential of X.

Equations of such type arose in mathematical finance and they are used to characterize optimal martingale measures.

Our aim is to prove the existence of a unique solution of equation (1) for arbitrary $\alpha \neq 0$ and η of a general structure, assuming that it satisfies the following boundedness condition:

A) η is an F_T -measurable random variable of the form $\eta = \xi + \gamma A_T$, where $\xi \in L^{\infty}$, γ is a constant and $A = (A_t, t \in [0, T])$ is a continuous Fadapted increasing process such that $E(A_T - A_\tau/F_\tau) \leq C$ for all stopping times τ for a constant C > 0.

Note that if $\alpha \neq 0$ (if $\alpha = 0$, solution of (1) does not exist in general), equation (1) is equivalent to the following semimartingale backward equation with the square generator

$$Y_t = Y_0 - \frac{\gamma}{2} A_t - \langle L \rangle_t - \frac{1}{\alpha} \langle L^\perp \rangle_t + L_t + L_t^\perp, \quad Y_T = \frac{1}{2} \xi.$$
(2)

Theorem 1. Let $\alpha \neq 0$ and condition A) be satisfied. Then there is a constant $\gamma_0 > 0$ such that for any $|\gamma| \leq \gamma_0$ there exists a unique triple (c, m, m^{\perp}) , where $c \in R_+$, $m \in BMO \cap \mathcal{M}$, $m^{\perp} \in BMO \cap \mathcal{M}^{\perp}$, that satisfies equation (1).

If the filtration generated by 2-dimensional Wiener processs (w, w^{\perp}) and $\xi = 2g(w_T, w_T^{\perp}), A_t = \int_0^t f(s, w_s, w_s^{\perp}) ds$ for some continuous, bounded functions g(x, y), f(s, x, y), equation (2) is equivalent to the PDE $V_t + \frac{1}{2} V_{xx} + \frac{1}{2} V_{yy} + |V_x|^2 + \frac{1}{\alpha} |V_y|^2 + \frac{\gamma}{2} f(t, x, y) = 0, \quad V(T, x, y) = g(x, y)$ (3)

and solutions of (2) and (3) are related as $Y_t = V(t, w_t, w_t^{\perp})$.