V. Kokilashvili

A. Razmadze Mathematical Institute, Georgian Academy of Sciences Tbilisi, Georgia

ON THE SOLVABILITY OF DIVERGENCE EQUATION IN THE THEORY OF INCOMPRESSIBLE FLUIDS

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a bounded domain with Lipschitz boundary and let $x_0 \in \Omega$.

Let $p: \Omega \to R^1$ be a measurable function satisfying the following conditions:

i)
$$1 < \underline{p} \le p(x) \le \overline{p} < \infty;$$

ii) $|p(x) - p(y)| \le \frac{C}{-\ln |x-y|}, |x-y| < \frac{1}{2}.$
Put $p'(x) = \frac{p(x)}{p(x)-1}.$

By $L^{p(\cdot)}_{\rho}(\Omega)$ we denote a Banach function space $L^{p(\cdot)}_{\rho}$, i.e., a space of all measurable functions for which

$$\|f\rho\|_{L^{p(\cdot)}} < \infty,$$

where $\rho(x) = |x - x_0|^{\alpha}$.

For the definition of the norm in $L^{p(\cdot)}$ see, for example, [1]. Define

$$\overset{\circ}{L}^{p(\cdot)}_{\rho} = \bigg\{ f \in L^{p(\cdot)}_{\rho}(\Omega) : \int_{\Omega} f(x) \, dx = 0 \bigg\}.$$

By $W^{1,p(\cdot)}_{\rho}$ we denote the weighted Sobolev space.

Theorem. Let p satisfy the conditions (i) and (ii). Assume that $\frac{1}{p(x_0)} < \alpha < \frac{1}{p'(x_0)}$.

Then for each $f \in \overset{\circ}{L}^{p(\cdot)}_{\rho}$ the divergence equation

 $\operatorname{div} u = f$

is solvable in vectorial $W^{1,p(\cdot)}_{\rho}$ space and the estimate

 $\|\nabla u\|_{L^{p(\cdot)}_{a}} \le c \|f\|_{L^{p(\cdot)}_{a}}$

holds.

References

1. L. Diening and M. Ružićka, Calderon–Zygmund operators in generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics. *Abert-Ludwig Universität Freiburg, Preprint* Nr. 21/2002–04.07.2002.