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ON INITIAL-BOUNDARY VALUE PROBLEMS IN AN
INFINITE STRIP FOR A NONLINEAR HYPERBOLIC

EQUATION OF THIRD ORDER

Let I ⊂ R be a compact interval containing zero. For the nonlinear
equation

u(2,1) = f
(
x, t, u, u(1,0), u(2,0), u(0,1)

)
(1)

consider the initial–boundary value problems
u(x, 0) = ϕ(x) for x ∈ [0, +∞),

u(0, t) = ψ(t), sup{|u(x, t)| : x ∈ [0,+∞)} < +∞ for t ∈ I;
(21)

u(x, 0) = ϕ(x) for x ∈ R, sup{|u(x, t)| : x ∈ R} < +∞ for t ∈ I. (22)

Here u(j,k)(x, y) = ∂j+ku(x,y)
∂xj∂yk , f : R× I × R4 → R is a continuous function,

ϕ : R→ R is a twice continuously differentiable function, and ψ : I → R is
a continuously differentiable function such that ϕ(0) = ψ(0).

The linear case of equation (1) arises in study of nonsteady simple shear-
ing flow of second order fluids (c.f. [1]) and also in the theory of seepage of
homogeneous fluids through fissured rocks ([2]).

We assume that f satisfies the following three conditions: (i) there
exists a continuous function δ : I → R such that (f(x, t, u, v, w, z1) −
f(x, t, u, v, w, z2)) sgn(z1 − z2) ≥ δ(t)|z1 − z2|; (ii) f is locally Lipschitz
continuous with respect to w; (iii) there exist continuous functions l and
g : I → R+ such that |f(x, t, u, v, w, z)| ≤ l(t)(|u|+ |v|+ |w|+ |z|) + g(t).

Theorem. Let δ(t) > 0 for t ∈ I. Then problem (1), (2k) (k = 1, 2) is
solvable. Moreover an arbitrary solution uk of problem (1), (2k) (k = 1, 2)
admits the estimate

‖u1‖C(2,1)(R+×I) ≤ M
(
‖ϕ‖C2(R+) + ‖ψ‖C1(I) + ‖g‖C(I)

)
for k = 1,

‖u2‖C(2,1)(R×I) ≤ M
(
‖ϕ‖C2(R) + ‖g‖C(I)

)
for k = 2,

where M > 0 is a constant independent of ϕ, ψ and g. Furthermore if f is
locally Lipschitz continuous with respect to u and v, then problem (1), (2k)
(k = 1, 2) is uniquely solvable.

The above results are obtained jointly with Prof. V. Lakshmikantham.
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