L. Kokilashvili

I. Javakhishvili Tbilisi State University Tbilisi, Georgia

ON FOURIER MULTIPLIERS AND THE SOLVABILITY OF CERTAIN SUPERLINEAR PDE

The main goal of this report is to present two-weighted estimates for the multipliers of Fourier transforms and their application to the multidimensional Ricatti equation.

Let $S(\mathbb{R}^n)$ be Schwartz space of rapidly decreasing functions. Denote by $F(\varphi)$ the Fourier transform of $\varphi \in S(\mathbb{R}^n)$. Let the operator K defined by the Fourier transform equation

$$F(K\varphi) = mF(\varphi), \ \varphi \in S.$$

The following statement is true:

Theorem. Let the function
$$v_j$$
, $j = 1, 2$, satisfy the conditions
(i) $v_j \in L^1(\mathbb{R}^1)$, $j = 1, 2$.
(ii) $\int_{\mathbb{R}^1} \frac{1}{v_2(x)|x|^{(1-\alpha)2}} dx < \infty$.

Moreover, assume that

$$m(\lambda) = \int_{-\infty}^{\lambda} d\mu,$$

where μ is a finite measure on \mathbb{R}^1 . Then the following inequality

$$\int_{R^1} |Kf(x)|^2 \frac{1}{w(x)} dx \le$$
$$\le \left(\int_{R^1} \frac{1}{v_2(x)|x|^{(1-\alpha)2}} dx \right) \left(\int_{R^1} |f(x)|^2 \frac{1}{v_1(x)} dx \right)$$

holds, where $w \stackrel{def}{=} v_1 * v_2$.

We intend the application to the solvability problem for equation

$$\Delta u = |\nabla u|^p + f, \ 1$$

to discuss.